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Abstract

In the task of entity description generation,
given a context and a specified entity, a model
must describe that entity correctly and in a
contextually-relevant way. In this task, as well
as broader language generation tasks, the gener-
ation of a nonfactual description (factual error)
versus an incongruous description (contextual
error) is fundamentally different, yet often con-
flated. We develop an evaluation paradigm that
enables us to disentangle these two types of
errors in naturally occurring textual contexts.
We find that factuality and congruity are often
at odds, and that models specifically struggle
with accurate descriptions of entities that are
less familiar to people. This shortcoming of
language models raises concerns around the
trustworthiness of such models, since factual
errors on less well-known entities are exactly
those that a human reader will not recognize.1

1 Introduction

Gricean maxims of effective communication
(Grice, 1975) as they pertain to referring expres-
sions (Dale and Reiter, 1995) posit that referring
expressions should not convey false information
and that they should be relevant to context. Factu-
ality and congruity are thus the two main properties
of pragmatically appropriate referring expressions.

Following these maxims, human-written refer-
ring expressions strongly adhere to the principles
of factuality and congruity (Dale and Reiter, 1995;
Kheirabadi and Aghagolzadeh, 2012). Standard
evaluation practices for referring expression gener-
ation (Belz et al., 2009; Kang et al., 2019; Cao and
Cheung, 2019), however, only distinguish between
model generated referring expressions being accu-
rate (ground-truth) versus inaccurate (not ground-
truth), without considering factuality and congruity
of the model outputs. However, this distinction

1The code and data used in the paper is available at https:
//github.com/navitagoyal/Factual-or-Contextual-E
rrors-in-LM-Desc-Gen.

MASK Thomas Bach MASK an-
nounced protest zones in the Sochi
Winter Olympics 2014.

Ground-Truth
International Olympic
Committee President

Nonfactual
Russian Olympic

Committee Chairman

The event opened with a scene
dubbed "Green and Pleasant", af-
ter a line from MASK William Blake
MASK .

Ground-Truth
the English Poet

Incongruous
the English Painter

Figure 1: Two example contexts with MASK s represent-
ing potential location of a target referring expression.
In the top case, the inaccurate generation is nonfactual
(not true) but contextually plausible (given “Sochi”); in
the bottom, the inaccurate generation is factual (Blake
was both a poet and a painter) but incongruous.

between factual and contextual errors is important,
as contextually-relevant factual errors are likely to
be harder for people to identify; this concern is
supported by evidence that human annotators trust
translations that are fluent/coherent but inadequate
over translations that are adequate but disfluent
(Martindale and Carpuat, 2018; Popović, 2020).

In this work, we design an evaluation framework
to study the distribution of factual and contextual
errors in referring expression selection and gen-
eration, for descriptions of people mentioned in
English news articles. In the top example in Fig-
ure 1, the model generates the description Russian
Olympic Committee Chairman, plausibly based on
the contextual cues (Sochi), leading to factual error
that is contextually relevant. We call such contex-
tual but not factual descriptions nonfactual. In the
bottom example in Figure 1, the generated descrip-
tion the English Painter is factually correct (Wiliam
Blake was both a poet and painter), however it is
contextually not relevant. We call such factual but
not contextual descriptions incongruous.

To tease apart these two failure modes, we au-
tomatically construct potentially nonfactual and
incongruous reference texts using article context
and other factual sources and evaluate generated
descriptions against these reference texts (§ 2.1).

https://github.com/navitagoyal/Factual- or-Contextual-Errors-in-LM-Desc-Gen
https://github.com/navitagoyal/Factual- or-Contextual-Errors-in-LM-Desc-Gen
https://github.com/navitagoyal/Factual- or-Contextual-Errors-in-LM-Desc-Gen


Silvio Berlusconi called into a television talk
show Monday night during an episode dis-
cussing claims that he had paid prostitutes
for sex, lashing out at the program’s host for
running a “television brothel.” The heated ex-
change with Gad Lerner on the program, called
“L’Infedele,” ended with Berlusconi hanging up
after a nearly two-minute tirade.

Italian Prime
Minister

Anson Chan echoed the sentiment in an interview
with CNN on Monday. “Whatever Beijing says in pub-
lic now I think it can hardly afford to ignore the voices
of 780,000 people.” But the Chinese government’s
reaction was decidedly more frosty... Rimsky Yuen
has previously said there is no legal basis for the vote.
Yuen, as well a number of other, pro-establishment
voices, declined to speak to CNN.

Secretary for
Justice Accurate

Entrepreneur Hong Kong
Bar Assoc 4 Incongruous

Television
Presenter 4 Politician Nonfactual

Lawyer Actor Both

The IRS controversy has provoked an increas-
ingly bitter dispute between the White House
and congressional Republicans that included
harsh accusations by both sides last weekend.
Jay Carney declined to comment directly Mon-
day on the accusation by MASK Darrell Issa
MASK that he was a “paid liar.”

House Oversight
Cmte Chair

According to court documents, between ..., Mellon
allegedly wrote personal checks payable to a friend,
hiding that she was giving money to Edwards. The
checks were made out to the wife of MASK Andrew
Young MASK , in her maiden name, and were de-
posited into accounts controlled by Young. As Young
planned, Young allegedly used the money to provide
Hunter with rent, furniture, . . .

Edwards’ aide Accurate

businessman former Cong-
ressman 4 Incongruous

White House
spokesman 4

former Pres.
candidate Nonfactual

the
Oscar-nominee

long-time
companion Both

Figure 2: Example for claim identification (top) and description identification (bottom) tasks with context and four
distractors. The bold distractor (4) indicates the model’s predicted class: nonfactual (left) and incongruous (right).

Additionally, we consider a multiple-choice identi-
fication experiment, with distractors that are non-
factual, incongruous, or both (§ 2.2, § 2.3). Our
goal is to evaluate the ability of language models
to select between factually and contextually plau-
sible alternatives and to determine which aspects
are more problematic for language models. We
find that models commonly make both factual and
contextual errors.

Because people reading the generated descrip-
tions might fail to recognize factual errors for enti-
ties they are unfamiliar with, we augment our evalu-
ation to distinguish between more and less familiar
entities. We find that models disproportionately
predict nonfactual descriptions for unfamiliar enti-
ties, raising concerns about the trustworthiness of
text where description selection is guided by lan-
guage models (§5). We validate our nonfactuality
and incongruity assumptions on the proposed dis-
tractors (§6) and show that our findings continue to
hold for a completely validated test set. Finally, we
discuss the validity of our proposed evaluations in
measuring what we purport them to measure from
the measurement modeling perspective (§7).

2 Referring Expression Generation

Open-book referring expression generation in-
volves two steps: claim selection and description
generation (Kang et al., 2019). Claim selection
identifies facts from the target entity’s WikiData
(referred as claims) relevant to the context. De-
scription generation produces the text, conditioned
on the context and relevant claims, for instance us-
ing an auto-regressive encoder (Kang et al., 2019).
Traditionally, such generation tasks are evaluated
using text similarity metrics, such as ROUGE (Lin,
2004) or BLEU (Papineni et al., 2002), of the pre-

dicted description with respect to the ground-truth
description. However, the failure modes beyond
the ground-truth are usually left unexplored.

Here we develop a framework for evaluating
generated descriptions against various reference
texts, controlled to be accurate, nonfactual, or in-
congruous, to sharpen our understanding of model
errors. We also design multiple choice evaluations
for claim and description identification, with dis-
tractors that are nonfactual, incongruous, or both.
This multiple-choice setup allows more control
over the chosen alternatives to highlight the fac-
tual and contextual preferences in language models.
For instance, in the top-left example in Figure 2, the
claim identification model identifies Silvio Berlus-
coni as a television presenter rather than as the
Italian prime minister, possibly because the context
text mentions “television talk show.”

2.1 Description Generation
The description generation task calls for generating
referring expressions describing people in a text.
For training a description generation model, we
mask the description text in an article and feed the
masked context 𝑡 , along with the target entity 𝑒, to
a language model as input to generate the descrip-
tion left-to-right. To investigate factual and contex-
tual errors, we evaluate the similarity of generated
description (𝑦gen) not only with the ground-truth
(𝑦⋆) but also with alternative factual, or contex-
tual, reference text that are incongruous (𝑦 inc), or
nonfactual (𝑦nf), respectively.
� 𝑦 inc: we take that entity’s entire Wikipedia text

as an incongruous reference; this presumably
contains true facts about that entity, but which
are not relevant in the article context.

� 𝑦nf: we take the descriptions of all other entities
mentioned in the source article (excluding target



entity’s descriptions) as a nonfactual reference;
these are very unlikely to be facts about the can-
didate entity, but are definitionally contextually
relevant.

In both cases, we exclude ground-truth descriptions
from incongruous and nonfactual reference texts.

Given these reference texts, we measure preci-
sion of the generated description (𝑦gen) with the
𝑦ref ∈ {𝑦⋆, 𝑦 inc, 𝑦nf} (after excluding stop words)
using BLEU (unigram) (Papineni et al., 2002),
ROUGE-L (Lin, 2004) and Bertscore (Zhang et al.,
2019). We use precision, instead of recall, as the
generated description and ground-truth tend to be
short (1.43 ± 0.89 words and 1.64 ± 0.85, respec-
tively), whereas the distractor reference texts are
much longer. The recall of distractor reference
is not possible, or even expected. The distractor
reference texts, instead, act as noisy proxy of the
space of incongruous and nonfactual tokens that the
model might generate. We would expect a “good”
system to have high precision with the ground-truth
and low precision with either distractor. A high
precision with respect to distractor reference texts
indicates model tendency to generate factually in-
correct or contextually incongruous descriptions.

2.2 Claim Identification

The claim identification task is to find a relevant
Wiki property (claim) for an entity (𝑒) mentioned
in the article given the masked article context (𝑡).
We frame claim identification as a multiple-choice
problem where the ground-truth (𝑦⋆) is taken
from the original text and we automatically
construct incongruous (𝑦 inc), nonfactual (𝑦nf),
and both incongruous and nonfactual (𝑦both)
distractors (see Figure 2 (top)). For a given text
𝑡 and a target entity 𝑒, we construct alternatives
CI = {𝑦⋆, 𝑦 inc, 𝑦nf, 𝑦both} as:
� 𝑦⋆: claims in the target entity’s Wiki tagged

as relevant to the ground-truth description. If
multiple, we choose the claim with the highest
unigram overlap with the description.

� 𝑦 inc: claims in the target entity’s Wiki tagged as
irrelevant to the ground-truth description.

� 𝑦nf: claims pertaining to the other entities in the
article, drawn from the article directly.

� 𝑦both: claims pertaining to entities not men-
tioned in the article, drawn from a random other
article.

For 𝑦⋆ and 𝑦 inc, we use the contextual relevance
mark up from Kang et al. (2019). To minimize

the chance that a distractor is accidentally accurate,
we sample all distractors from respective candidate
sets ensuring zero unigram overlap with the ground-
truth description. We ascertain nonfactuality of
𝑦nf and 𝑦both distractors by enforcing zero overlap
with all claim associated with the target entity.

2.3 Description Identification
Description identification aims to identify the
ground-truth description (𝑦⋆) from distractors. In
contrast with claim identification, which uses
structured Wiki claims as alternatives, descrip-
tion identification uses free-text descriptions in
the article. We construct alternatives DI =
{𝑦⋆, 𝑦 inc, 𝑦nf, 𝑦both} as:
� 𝑦 inc: descriptions of 𝑒 from another article.
� 𝑦nf: description of another entity in the article.
� 𝑦both: description of an entity not mentioned in

the article.
We ensure that distractor descriptions
(𝑦 inc, 𝑦nf, 𝑦both) have zero unigram overlap
with 𝑦⋆. Also, 𝑦nf and 𝑦both do not have any
overlap with any description of the target entity.

For both claim and description identification, the
model takes (𝑡, 𝑒, 𝑦) as input and outputs a proba-
bility 𝑝(𝑦), for each 𝑦 ∈  = {𝑦⋆, 𝑦 inc, 𝑦nf, 𝑦both}.
We report the relative frequency that each type of
distractor is highest ranked: TOP = argmax

𝑦∈
𝑝(𝑦).

We also compute a mean reciprocal rank (MRR) for
the ground-truth and distractor classes on the held-
out test data. MRR averages the reciprocals of the
rank of each class: large MRR values correspond
to higher ranking alternatives.

For uniform comparison of the generation ex-
periment with the identification experiments, in
addition to reporting the BLEU, ROUGE-L, and
Bertscore of the generated description with respect
to the ground-truth and distractor reference texts,
we also rank the different classes (accurate, in-
congruous, and nonfactual) based on their BLEU,
ROUGE-L, and Bertscores on each example and
report the TOP and MRR of each class. Note, we do
not have a both incongruous and nonfactual class
in the description generation task as the generation
task is free-form, making the scope of description
that is both incongruous and nonfactual too open-
ended to be expressed by some reference text.

3 Entity Familiarity

Our proposed evaluation attempts to disentangle
factual and contextual preferences in language mod-
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Figure 3: Familiarity: heuristic vs human annotation.

els in generating referring expression for entities
mentions in news articles. However, these pref-
erences need not be uniform across entities. Lan-
guage models may possess disparate information
about different entities, leading to disparate re-
liance on factual and contextual cues. We aim to
understand how factual and contextual errors relate
to the familiarity with the entity being described.

We develop a heuristic for approximating entity
familiarity, adapted from Siddharthan et al. (2011).
We tag entities that always appear in article sum-
maries without descriptions (referring expressions)
as familiar and the rest as unfamiliar.

4 Experiment Details

We conduct our experiments on the PoMo dataset
(Kang et al., 2019), which contains English news ar-
ticles from CNN, Daily Mail and New York Times,
along with their summaries. The dataset also iden-
tifies post-modifier description for an entity men-
tioned in the article and a set of claims from target
entity’s Wikidata. We extract all person entities
mentioned in the article using NER tagging (Finkel
et al., 2005). We use claims associated with the tar-
get entity and other entities mentioned in the article
to construct alternatives for claim identification.

For description identification and generation
experiments, we extract referring expressions—
pre-modifier, relative clause, appositive, partici-
ple clause, adjective/adverb clause and preposi-
tional phrase—using the regular expressions of
Staliūnaitė et al. (2018). We use the same set of
referring expressions for familiarity heuristics. We
use a dependency parser (Manning et al., 2014)
to extract the descriptions associated with entities’
first mention.2 We identify alternative descriptions

2First mentions of entities are generally longer and de-
scriptive, and serve to introduce relevant information about
the entity. Later references tend to be mostly referential (Sid-

Train Valid Test

Claim Ident.
Familiar 2050 27 66

Unfamiliar 3608 112 93

Desc. Ident.
Familiar 10305 57 59

Unfamiliar 5888 46 22

Desc. Gen.
Familiar 13373 353 365

Unfamiliar 19721 726 631

Table 1: Number of examples with familiar and unfa-
miliar entities across tasks.

of an entity in other articles based on full name
matches. Within an article (or summary), we match
entities based on first or last name (Siddharthan
et al., 2011).

We validate the familiarity heuristic by collect-
ing human annotations on a subset of 200 person
entities in the validation set, with 3-4 annotations
per entity. We ask crowdworkers on AMT (paid
∼US$15/hour on AMT) if they are familiar with
the given entity. For the entities marked as famil-
iar, we ask annotators to add a short description
of the entity to ensure that annotators perform the
task carefully. We specifically ask the annotators
to not use external search for this task and clarify
that there is no penalty for tagging entities as fa-
miliar or unfamiliar. We use two attention check
questions: one corresponding a well-known entity
(e.g., Joe Biden) and another corresponding to a
made up entity, expecting the response as familiar
and unfamiliar, respectively. We further discard the
annotations where 90% of entities are marked as
familiar or unfamiliar.

Inter-rater agreement according to the gener-
alized Kappa measure for multiple raters (Gwet,
2014) is 0.768, indicating “substantial agreement”
(Viera et al., 2005). We consider entities tagged
unfamiliar by the majority annotators as unfamil-
iar and the rest as familiar, and measure preci-
sion/recall of our heuristic with respect to this
ground-truth. The proposed heuristic has preci-
sion of 79%, recall of 64% and F-score of 67%. This
is close to precision, recall, and F-score of baseline
human annotations comparing one-vs-rest (74%,
75%, and 74%, respectively). See Figure 3 for exam-
ples of (dis)agreement between human annotations
and our heuristics.

Table 1 shows the distribution of examples with
familiar and unfamiliar entities across different
tasks. We apply our evaluation procedure on mod-

dharthan et al., 2011) (see Appendix A for details).
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Figure 4: Description Generation: BLEU, ROUGE-L, and Bertscore Precision across familiar and unfamiliar entities
for T5-base fine-tuned model. The model exhibit higher overlap with nonfactual reference texts for unfamiliar
entities and incongruous reference texts for familiar entities.3
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Figure 5: Claim Identification (left), Description Identification (middle), Description Generation (right): Relative
Frequency of Highest Rank and Mean Reciprocal Rank for each class across unfamiliar and familiar entities. Models
predominately favor nonfactual alternatives for unfamiliar entities and incongruous alternatives for familiar entities.3

els that we fine-tune on each task. We consider 3
sequence-to-sequence models for the generation
task: T5-small, -base (Raffel et al., 2020) and
BART models (Lewis et al., 2020) with 60𝑀 , 220𝑀 ,
and 140𝑀 parameters, respectively. We consider 3
multiple-choice models for the identification tasks:
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) and ELECTRA (Clark et al., 2020) base
models with 110𝑀 , 130𝑀 , and 110𝑀 parameters,
respectively. See Appendix D for details.

5 Do error types differ for familiar vs
unfamiliar entities?

Figure 4 shows the generative evaluation with re-
spect to ground-truth and distractor reference texts
across familiarity for descriptions generated by the
fine-tuned T5-base model. We observe a higher
overlap with nonfactual reference texts for unfamil-
iar entities and a higher overlap with incongruous
reference texts for familiar entities across all eval-
uation metrics. The difference is significant for
BLEU and ROUGE metrics with 𝑝<0.005, but non-
significant for Bertscore. TOP and MRR of classes

(accurate, incongruous, or nonfactual) in descrip-
tion generation task, obtained by ranking the BLEU
overlap between the generated description and ref-
erence texts, yield similar results (Figure 5). We
observe a higher TOP and MRR for incongruous
reference texts for familiar entities and a higher
TOP and MRR for nonfactual reference texts for
unfamiliar entities. We include results for other
models and metrics in Appendix E.

Controlled evaluation of RoBERTa model fine-
tuned on Claim and Description Identification tasks
(Figure 5) echo the same trends. Nonfactual distrac-
tors are ranked higher than incongruous distractors
for unfamiliar entities, indicating more factual er-
rors. In contrast, incongruous distractors are ranked
higher for familiar entities, indicating more con-
textual errors. Additionally, comparing between
familiar and unfamiliar examples, we find that
rate of incongruous errors is significantly higher
(𝑝<{0.005, 0.05}) for familiar examples than that
for unfamiliar examples. The converse is true for

3 ⋆ and ⋆⋆ represents significance level of 0.05 and 0.005,
respectively, between the unfamiliar and familiar sets.



factual errors, with a significantly higher (𝑝<0.005)
rate of factual errors for unfamiliar examples than
familiar examples. This reflects that the distribu-
tion of different types of models errors is different
for different entity types, with a disproportionately
higher rate of nonfactual predictions for unfamiliar
entities. Unsurprisingly, we also observe a higher
performance (accurate class) for familiar entities
in most of the cases. Our findings are consistent
across models (Appendix E).

6 Are nonfactual and incongruous
alternatives really so?

Our results highlight model tendency to make fac-
tual or contextual errors insofar as the automatically
extracted distractors and reference texts are faithful
to their associated classes. Our automatic distractor
extraction makes two assumptions: nonfactuality
and incongruity of distractors. For nonfactual dis-
tractors, we assume that a claim or description as-
sociated with other people mentioned in the article
is contextual, but not factual, for the given entity.
This assumption is easy to verify: we consider the
claims and descriptions associated with the target
entity in the PoMo corpus ensuring no overlap with
the facts associated with the target entity.

For the incongruous distractors, on the other
hand, we have assumed that a random alternative
factual claim/description associated with the target
entity that is not present in the current context is
incongruous. However, it is entirely plausible that
alternative factual descriptions are actually some-
times congruous, representing a threat to the valid-
ity of this measurement. To ascertain how reason-
able this assumption is, we conduct a human study.
Because assessing the contextuality of a descrip-
tion is difficult in isolation, we ask annotators to
compare automatically extracted incongruous (but
factual) descriptions with the congruous (ground-
truth) descriptions. Annotators are shown the ar-
ticle context and the two descriptions and asked
to give their preference on a 5-point scale ranging
from strongly prefer description 1 to strongly pre-
fer description 2. We randomize description 1 and
description 2 as incongruous or ground-truth de-
scriptions. We collect 3 annotations for 50 samples
from both claim and description identification tasks,
compensating AMT crowdworkers at US$15/hour.

For the description generation task, we construct
nonfactual reference text as the context excluding
factual description of the entity, to enforce the non-

Claim Ident. Desc. Ident. Desc. Gen.

Rating congruous 3.74 ± 0.24 3.68 ± 0.25 3.71 ± 0.21
Rating incongruous 2.26 ± 0.24 2.31 ± 0.25 2.29 ± 0.21
Effect size 0.87∗∗ 0.78∗ 0.96∗∗
Inter-rater agg. 0.61 0.54 0.73
Agreement 0.82 0.76 0.79

Table 2: Human verification of incongruity of extracted
incongruous distractors for identification tasks and gen-
erated incongruous description for the generation task.
Annotators rate incongruous descriptions as less contex-
tual than the ground-truth (congruous) descriptions, as
expected. The effect size (Cohen’s d) is significant (𝑝 <
{0.05∗, 0.005∗∗}) for all tasks. We observe fair agreement
with our automatically extracted incongruous class.

factuality assumption. To assess the validity of
incongruous reference texts in the description gen-
eration task, we collect human annotations. We
consider the generated descriptions that overlap
with the target entity’s Wikipedia, aka, the incon-
gruous reference text as incongruous description.
We ask annotators to compare this incongruous
description with the ground-truth congruous de-
scription, as we do not have a generated congruous
description for the same input. We ask the anno-
tators to rate the contextual appropriateness of the
two on a scale of 1–5 for 50 examples (3 annota-
tions each). More details on human annotations
and interface are included in Appendix F.

We observe a moderate inter-rater agreement
of 0.63 (Fleiss’ kappa). The annotator rating for
congruous and incongruous description is 3.71 ±
0.23 and 2.28 ± 0.23 (mean± standard error), with
statistically significant effect size of 0.87 (Cohen’s
d) at 𝑝<0.05. The inter-rater agreements and effect
sizes for different tasks are shown in Table 2. We
take the description with annotator rating <3 as
incongruous. We observe a majority agreement of
0.79 with our automated annotations.

For the claim and description identification task,
we construct a gold test set with the subset of exam-
ples where our extracted distractors agree with the
human annotations. We obtain 41 and 38 gold ex-
amples in the claim and description identification,
respectively. We also internally validate the factual-
ity assumption for the gold set. We manually check
that the incongruous distractors in the gold test set
are factual and the nonfactual distractors are not.
The evaluation on the gold set is limited to identi-
fication tasks. For description generation, human
annotators verify only the generated description
that overlap with incongruous reference text, not
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Figure 6: MRR on the gold test set for claim identi-
fication (top) and description identification (bottom).
The gold set evaluation supports our previous findings:
models favor nonfactual alternatives for unfamiliar and
incongruous alternatives for familiar entities.3

the full reference text, which would require more
involved and time-consuming annotations.

Figure 6 shows similar trends on familiar and un-
familiar entities in the human annotated set (gold
test set) as seen previously on automatically an-
notated test sets (Figure 5). Models make more
factual errors for unfamiliar entities and more con-
textual errors for familiar entities (𝑝<0.05), both for
claim and description identification tasks.

7 Measurement Validity

Above, we analyzed factual and contextual prefer-
ences in language models on three tasks pertaining
to referring expression generation. Throughout,
we have shown that the language models we mea-
sure tend to make both factual errors and congruity
errors, and also have shown that these measures
are—in various ways—actually measuring what
we purport them to measure. Formally, we can
conceptualize this from a measurement modeling
perspective (Messick, 1995; Jacobs and Wallach,
2021), wherein we consider factual and contextual
errors to be unobservable constructs.

In this view, we have proposed three measure-
ment devices as proxies for the unobservable con-
struct. This forms a measurement model, which
we can example from the perspective of measure-
ment validity, considering: face validity (the extent
to which the measures look plausible), content va-
lidity (the extent to which the measures capture

the substantive nature of the construct), convergent
validity (the extent to which the measure matches
related measures), concurrent validity (the extent
to which the measures distinguish between groups
that it should meaningfully be able to distinguish
between), and consequential validity (the implica-
tion of using the measure).

Face validity is inherently subjective in nature.
We pose that the incongruous (but factual) and non-
factual (but contextual) alternatives respectively en-
code the factual and contextual cues that the models
refer to. Without any external criteria, readers are
often the only judge of the face validity.

Content validity has two key sub-aspects: sub-
stantive validity and structural validity.
� Substantive validity asserts that the measure,
fully and only, incorporates the properties related
to the construct. We argue for substantive validity
of the measures based on our design and human
validation (§6). By design, nonfactual alternatives
are extracted from the context and do not have
any overlap with the factual information about
the entity captured in Wikipedia or WikiData.
So, to the extent that Wikipedia/WikiData are
correct, these have strong substantive validity.
The incongruous alternatives are extracted from
factual information about the entity and verified
to be incongruous using human validation. They
subsequently point to factual preferences in the
models. This confirms that the measures capture
only the properties related to the construct for both
identification and generation tasks.

In the case of the description generation task,
however, the nonfactual and incongruous measures
do not fully capture the respective constructs of con-
textual and factual preferences in language models.
The unigram precision metric only accounts for
factual and contextual indicators in the generated
description dictated by the reference texts. Being
open-ended, the reference text for incongruous and
nonfactual generations is really broad. We design
alternative reference texts to cover the range of fac-
tual and contextual cues that the model might parrot
in generating entity descriptions, but the reference
text is not necessarily exhaustive. This points to
weaker substantive validity of the measures in the
description generation task.
� Structural validity is a component of content
validity that asserts that the measure captures the
structure of relationship between the constructs.



Dimension Description Generation Claim Identification Description Identification

Task ✓ Natural ✗ Semi-artificial ✗ Semi-artificial
Evaluation ✗ Difficult ✓ Easy ✓ Easy
Text ✓ Free-text ✗ Structured ✓ Free-text
Face validity ✓ Strong ✓ Strong ✓ Strong
Substantive validity ✗ Weak ✓ Strong ✓ Strong
Structural validity ✓ Strong ✗ Weak ✗ Weak
Convergent validity ✓ Agree ✓ Agree ✓ Agree
Concurrent validity ✓ Strong ✓ Strong ✓ Strong

Table 3: ✓ Pros & ✗ Cons of different tasks. Task, Evaluation, and Text consider the design differences for
description generation and claim & description identification tasks. The remaining consider the different dimensions
of construct validity for the incongruous and nonfactual measures in each task. The measures have Strong face
validity and concurrent validity across all tasks, but Weak substantive and structure validity for some tasks (§7). For
convergent validity, we note that measures Agree with each other across tasks.

We note that the identification task measures have
relatively weak structural validity: the probability
assigned to each alternative is relative and a higher
probability to incongruous alternative might stem
from being paired with a low probability nonfac-
tual alternative. On the other hand, the description
generation task measures have a strong structural
validity as the generation task is free-form, so the
model directly outputs the highest probability to-
kens. This represents a trade-off in content validity
of the measures: identification has stronger substan-
tive and generation has stronger structural validity.

Convergent validity considers the degree to
which multiple measures of the same unobserved
construct point in the same direction. Our three
proposed measures have a clear convergent validity.
As seen in the results (Figure 4-6), the measures
point to the same effects across tasks: models de-
fault to contextual cues, leading to factual errors,
for unfamiliar entities, whereas models tend to be
more factual, even while compromising on the con-
gruity of the description, for familiar entities. This
distinctive trend across familiar and unfamiliar en-
tities also points to the concurrent validity of the
proposed measures.

Concurrent validity asserts that the measure
should be able to distinguish between the meaning-
ful groups. Previous works highlight that language
models acquire information about entities seen dur-
ing pre-training (Petroni et al., 2019; Kandpal et al.,
2022). For such entities, we can expect the models
to reference the factual information seen during pre-
training. For unseen entities, on the other hand, we
can expect the model to yield best guess based on
contextual plausibility. Unsurprisingly, the models’
exposure to certain entities would correlate with

the human familiarity with these entities due to pro-
liferation of online content on respective entities
being a common cause for the two. The proposed
measures (nonfactual and incongruous alternatives)
are thus able to distinguish models’ contextual and
factual preferences between potentially seen and
unseen groups, confirming the concurrent validity
of the measures. Table 3 summarizes the validity
of our proposed measures across different tasks.

Consequential validity is an assessment of what
happens if a measure is adopted. The unanimous
trend across various tasks points to a deeper con-
cern for the variability in the priors that models
use for familiar vs unfamiliar entities. Standard
evaluations of tasks miss both what kind of errors
models make and how these errors differ for dif-
ferent populations. This work brings attention to
these problems that usually get hidden under the
rug of accuracy measures. Based on our findings,
we recommend that downstream tasks requiring
a balance of factual and contextual information
should probe into the model error distributions and
their variances across familiar and unfamiliar enti-
ties. Human evaluation for such tasks should also
account for human biases and limitations.

8 Related Work

Errors in Text Generation. Language models
often generate erroneous information, not sup-
ported by source and/or background documents
(Ji et al., 2023), often termed as hallucinations. Pre-
vious works in text generation—abstractive sum-
marization (Maynez et al., 2020; Pagnoni et al.,
2021), dialog generation (Dziri et al., 2021; San-
thanam et al., 2021), and translation (Lee et al.,
2019)—highlight these nonfactual or incongruous
generations, without disentangling the factual and



contextual errors. Cao et al. (2022) study errore-
nous generations in summarization, which are fac-
tual but unverifiable from the source text. Although
their work examines contextual errors, they do not
contrast these with factual errors due to the context.

Familiarity Prediction. Previous works have
studied familiarity of the reader with a person
mentioned in news, using linguistic signals in ar-
ticles and summaries (Siddharthan et al., 2011;
Staliūnaitė et al., 2018). Siddharthan et al. (2011)
distinguishes between familiar (“hearer-old”) and
unfamiliar (“hearer-new”) based on how people are
referred to in summaries— hearer-old entities are
referred to with name only or title + name, while
hearer-new are referred to with an additional de-
scription. Staliūnaitė et al. (2018) further studies
the change in description length over time as enti-
ties evolve from hearer-old to hearer-new.

Knowledge Probing. There have been many dis-
cussions previously around “knowledge” encom-
passed in language models. Petroni et al. (2019)
created the LAMA benchmark with (subject, rela-
tion, object) fact triplets, along with human-written
templates to elicit these facts. Language models
are designed to inherently focus on the context
for generation. LAMA benchmark (Petroni et al.,
2019) is specifically designed for factual probing.
As a result, the context, i.e. template or prompt, is
directly linked to the fact in question. More gener-
ally, language models are required to be both cor-
rect and contextually-relevant. Petroni et al. (2020)
improves factual recall by augmenting templates
with relevant contextual information retrieved from
external sources, such as Wikipedia. The task is de-
signed such that context aids factual probing. Our
work deals with naturally occurring contexts.

Factuality and Congruity. Our paper focuses on
the two main properties of referring expressions:
factuality and congruity. These properties are bor-
rowed from Gricean maxims of effective communi-
cation (Grice, 1975): quantity (give as much infor-
mation as needed, and no more), quality (not to give
information that is false), relation (stay pertinent
to the discussion) and manner (be clear/brief). We
adapt the maxims of quality and relation into factu-
ality and congruity. We do not focus on the max-
ims of quantity and manner, because these maxims
mainly apply to the use and frequency of referring
expressions. For example, familiar entities are de-
scribed without referring expressions in summaries

for conciseness (Siddharthan et al., 2011).
In a different directions, research in event fac-

tuality deals with the interaction between lexical
and syntactic information meant to convey vary-
ing levels of veracity or factuality of events men-
tioned in text (Nairn et al., 2006; de Marneffe et al.,
2012). For instance, “XYZ, the supposed best artist”
implies that the veracity of XYZ being the best
artist is questionable. In contrast to this line of
research, our work focuses on factuality in terms
of the maxim-of-quality sense alone. We conduct
a preliminary sanity check against lexicosyntactic
triggers for event factuality (White et al., 2018) to
confirm that referring expressions considered in
our work do not contain any. Extending to broader
pragmatic conditions related to event pragmatics
would be fascinating future work.

9 Conclusion

In this work, we integrate indicators for factual in-
consistencies and contextual incongruities in auto-
mated evaluation in referring expression generation.
Our paper aims at conducting post-hoc analyses of
language models in referring generation task to as-
sess the differences in error types across familiar
vs unfamiliar entities that are not reflected in the
aggregate accuracy numbers alone. Comparisons
with alternative factual and contextual reference
text, in addition to those with ground-truth descrip-
tion, suggest that description generation models
heavily mis-generate incongruous and nonfactual
description. We also show this effect using con-
trolled multiple-choice experiments for claim and
description identification. Further, we show that
language models disproportionately rely on context
when describing less familiar people, resulting in
factually incorrect descriptions.

The tasks discussed in our work are meant to
exemplify the disparities in language model errors
to advocate further research investment in expand-
ing language model evaluation beyond accuracy.
Our work opens avenues for future research on
the effects of augmenting language models with
retrieved information on the factuality and con-
gruity of the generations: do retrieval-augmented
language models still make factual errors and are
these models able to maintain the contextuality of
the generated descriptions. Further, more work is
needed to study to what extent language models
abide by the conversational pragmatics in the wild.



Limitations

Our work aims to uncover how the distribution of
factual and contextual errors in referring expres-
sion generation varies based on the familiarity of
entities. Our proposed experiments uncover this
effect using pragmatics-driven heuristics. We need
a more general deep-dive into what models “know"
to estimate how language models handle known
and unknown information differently, in a way that
might even escape human scrutiny. Further, our dis-
cussion is limited to specific semi-artificial tasks.
Although our work reveals an hitherto understud-
ied shortcoming in language models, extending this
diagnosis to general tasks might be non-trivial.

Ethics Statement

In this work, we adapt a pragmatic-driven familiar-
ity heuristic to study factual and contextual errors
for familiar and unfamiliar entities. Our work re-
veals that description generation disproportionately
rely on context for unfamiliar entities leading to
incorrect predictions. Our heuristic for tagging fa-
miliarity is aimed at contrasting model errors. We
do not propose the use of this heuristic to filter
unfamiliar entities in end services.
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A Why First Mention Description?

The choice of considering entity description associated with entities’ first mention is inspired by previous
studies in referring expressions (Siddharthan et al., 2011). Siddharthan et al. (2011) find that the first
mentions of entities are generally longer and descriptive, and serve to introduce relevant information
about the entity. Later references tend to be mostly referential. We confirm this property in our data: we
find that only 14% instances of later mentions of entities, if any, have descriptions. We ignore these later
descriptions to avoid any effect of description style varying across first vs later descriptions.

B Data

The PoMo dataset is built on top of CNN and Daily Mail data (See et al., 2017), available under MIT
License with conditions only requiring preservation of copyright and license notices, and Wikidata4

available under the Creative Commons Attribution/Share-Alike License. No additional copyright is listed
for the PoMo dataset (Kang et al., 2019).

C Evaluation Metrics

For claim and description identification tasks, we use highest ranking prediction TOP and Mean Reciprocal
Rank (MRR) evaluation metrics. TOP considers the highest ranking prediction as 1 and the rest of the
predictions as 0:

TOP(𝑐) =
1
𝑛

𝑛
∑
𝑖=1

𝕀[𝑐 = argmax
𝑦𝑐∈

{𝑝𝑖(𝑦𝑐)}] (1)

where 𝑐 ∈ {⋆, inc, nf, both} is accurate, nonfactual, incongruous, or both class, 𝑝𝑖(𝑦𝑐) is the prediction
probability of the class 𝑐 in the 𝑖𝑡ℎ sample, and 𝕀 is the indicator function. Mean Reciprocal Rank, on the
other hand, takes into account the rank order of different classes in each test example:

MRR(𝑐) =
1
𝑛

𝑛
∑
𝑖=1

1
rank𝑐

(2)

where rank𝑐 is the rank of alternative from class 𝑐 in the 𝑖𝑡ℎ test sample.
For description generation, we consider three generative metrics: BLEU (Papineni et al., 2002),

ROUGE-L (Lin, 2004), and Bertscore (Zhang et al., 2019) precision. For each example, we calculate the
generative metrics for the generated description with respect to the accurate reference text (ground-truth
description) and the incongruous and nonfactual reference texts as described in §2.1. We can consider the
set of reference texts as  = {𝑟⋆, 𝑟 inc, 𝑟nf}. Let 𝑠𝑖(𝑦, 𝑟 𝑐) be generative score of the generated description
𝑦 with respect to the reference text 𝑟 𝑐 for the 𝑖𝑡ℎ sample, where 𝑐 ∈ {⋆, inc, nf}. We further rank the
three classes—accurate, incongruous, nonfactual—based on their generative scores on each example and
calculate TOP and MRR as:

TOP =
1
𝑛

𝑛
∑
𝑖=1

𝕀[𝑐 = argmax
𝑟 𝑐∈

{𝑠𝑖(𝑦, 𝑟 𝑐)}] (3)

and

MRR(𝑐) =
1
𝑛

𝑛
∑
𝑖=1

1
rank𝑐

, (4)

where rank𝑐 is the rank of the reference text from class 𝑐 in the 𝑖𝑡ℎ test sample.

D Experiment Details

We fine-tune BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and ELECTRA (Clark et al., 2020)
base models with 110𝑀 , 130𝑀 , and 110𝑀 parameters (𝐴 = 12, 𝐻 = 768 and 𝐿 = 12), respectively, for claim
and description identification in multiple-choice setting to predict the accurate alternative. For description

4https://www.wikidata.org/wiki/Wikidata:Database_download

https://www.wikidata.org/wiki/Wikidata:Database_download


Precision TOP MRR

Error class BLEU ROUGE BERT BLEU ROUGE BERT BLEU ROUGE BERT
(L) score (L) score (L) score

T
5-

ba
se Accurate 0.483 0.456 0.662 0.508 0.517 0.658 0.706 0.714 0.795

Incongruous 0.362 0.337 0.462 0.189 0.185 0.091 0.62 0.635 0.463
Nonfactual 0.463 0.436 0.503 0.303 0.298 0.251 0.745 0.752 0.576

T
5-

sm
al

l Accurate 0.35 0.324 0.584 0.349 0.357 0.508 0.609 0.616 0.699
Incongruous 0.398 0.367 0.46 0.203 0.213 0.105 0.626 0.645 0.477
Nonfactual 0.58 0.543 0.523 0.447 0.429 0.388 0.83 0.839 0.657

B
A

R
T Accurate 0.058 0.064 0.362 0.006 0.009 0.024 0.356 0.362 0.366

Incongruous 0.374 0.27 0.533 0.148 0.195 0.163 0.561 0.586 0.563
Nonfactual 0.588 0.431 0.623 0.846 0.796 0.813 0.937 0.929 0.904

Table 4: Description Generation: BLEU, ROUGE-L, and Bertscore precision on the test set. Precision represents
the actual generation metrics; TOP and MRR represent the top and mean reciprocal rank of classes obtained by
ranking the generative metrics (BLEU, ROUGE, Bertscore) between the generated description and reference texts
from respective classes. Numbers in bold represent the best performing model (highest score on the accurate class).

Error class Claim Identification Description Identification
TOP MRR TOP MRR

B
E

R
T

Accurate 0.783 0.883 0.667 0.809
Incongruous 0.089 0.462 0.247 0.576
Nonfactual 0.115 0.404 0.049 0.373
Both 0.013 0.335 0.037 0.325

R
oB

E
R

Ta Accurate 0.809 0.901 0.711 0.839
Incongruous 0.102 0.457 0.224 0.579
Nonfactual 0.083 0.397 0.066 0.355
Both 0.006 0.329 0.0 0.31

E
le

ct
ra

Accurate 0.841 0.904 0.368 0.599
Incongruous 0.076 0.434 0.276 0.538
Nonfactual 0.076 0.419 0.224 0.511
Both 0.006 0.326 0.132 0.435

Table 5: Claim and Description Identification Evaluation. TOP and MRR on the test set. Numbers in bold represent
the best performing model (highest score on the accurate class).

generation, we fine-tune a T5-small and T-5 base model (Raffel et al., 2020) with 60𝑀 parameters (𝐴 = 8,
𝐻 = 512, 𝐿 = 12) and 220𝑀 parameters (𝐴 = 12, 𝐻 = 768, 𝐿 = 12), respectively, and a BART base model
with 140𝑀 parameters (𝐴 = 12, 𝐻 = 768, 𝐿 = 12). We use a learning rate of 2 × 10−5 with huggingface5

implementation of Adam optimizer (Loshchilov and Hutter, 2019) with a weight decay of 0.01. The
models are trained for 3 epochs and take about 2-3 hours each to train.

E Results

Table 4-5 show the evaluation of description generation and claim and description identification tasks
across different models. We observe an accuracy of 78%, 81%, and 84% on claim identification task and
accuracy of 67%, 71%, and 36% on description identification task for BERT, RoBERTa, and ELECTRA
models, respectively. Presumably ELECTRA model performs distinctly worse on description identification
due to lack of hyper-parameter tuning, which we keep same across all models for ease of experimentation.
We find that models rank incongruous or nonfactual distractors at top in between 4 − 27% test examples.
We also note that the accuracy in description identification task is on average lower than the accuracy on
the claim identification task. The lower accuracy in description identification task reflects the difficulty of
identifying appropriate free-text descriptions, as opposed to structured claims.

For description generation, we observe best performance for T5-base model with a BLEU, ROUGE-L
and Bertscore of 0.46, 0.52, and 0.71 with respect to the ground-truth description. Ranking the ground-

5https://huggingface.co/

https://huggingface.co/
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Figure 7: Description Generation: BLEU, ROUGE-L, and Bertscore Precision across familiar and unfamiliar
entities. Models exhibit higher overlap with nonfactual reference texts for unfamiliar entities and incongruous
reference texts for familiar entities. ⋆ and ⋆⋆ represents significance level of 0.05 and 0.005, respectively, between
the unfamiliar and familiar sets.

truth and distractor classes based on the generative metrics (BLEU, ROUGE-L, Bertscore), we observe
an accuracy of 56% on average for the T5-base model (that is, precision is highest with respect to the
ground-truth description in 56% of test examples), with 15% and 28% incongruous and nonfactual errors
on average, respectively.

Figure 7-8 show the comparison between factual and contextual errors across familiar vs unfamiliar
entities for different models. The results are consistent with §5. Even though, the difference for Bertscore
is non-significant, we observe significant and consistent difference between familiar and unfamiliar sets
based on TOP and MRR of classes ranked by Bertscore.

F Human Annotations

We conduct two human annotation studies: verifying familiarity heuristics and task verification. For
familiarity annotations, we consider 200 person entities in our validation set and have 3 − 4 annotations
per entity where user mark the entities as being familiar or unfamiliar. For the entities marked as familiar,
we ask users to add a short description of who the person is to ensure that users are engaging with the task.
We specifically ask the users to not use external search for this task and clarify that there is no penalty for
tagging entities as familiar or unfamiliar (9). We set a small time window for the task, about 20 second
per entity) to dissuade users from taking aid of any resources. We internally discard the annotations
where 90% of entities are marked as familiar or unfamiliar. We further use two attention check questions:
one corresponding a well-known entity (e.g., Joe Biden) and another corresponding to a made up entity,
expecting the response as familiar and unfamiliar respectively. We collect annotations from English
speaking participants in North America region as the news source (CNN) employed in our study is U.S.
centric. We do not collect any other demographic information from the participants.

The second set of human annotations aim to verify the congruity assumption of incongruous distractor
and reference text in claim & description identification and description generation tasks respectively. We
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Figure 8: Claim Identification (left), Description Identification (right): Highest Rank and Mean Reciprocal Rank
across familiar and unfamiliar entities. Models predominately favor nonfactual alternatives for unfamiliar entities and
incongruous alternatives for familiar entities. ⋆ and ⋆⋆ represents significance level of 0.05 and 0.005, respectively,
between the unfamiliar and familiar sets.

sample incongruous and congruous descriptions for 50 test examples in each task (details of incongruous
and congruous description in §6). We ask 3 annotators to compare the two descriptions and rate them on
a scale of 1 − 5 from Strongly Prefer description 1 to Strongly prefer description 2 (Figure 10-11). We
ascertain attention by two repeat questions where we asking them to restate their preference for an entity
in previous example without context. We exclude responses that fail the attention checks, however, all the
annotators are compensated at $15/hour.



Figure 9: Instructions and example task for human annotations verifying familiarity heuristics.

Figure 10: Instruction to participants for human annotations verifying the congruity assumption

Figure 11: Example task for human annotations verifying the congruity assumption


