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Abstract

Sign languages are used as a primary language by approximately 70 million
D/deaf people world-wide. However, most communication technologies operate
in spoken and written languages, creating inequities in access. To help tackle this
problem, we release ASL Citizen, the largest Isolated Sign Language Recognition
(ISLR) dataset to date, collected with consent and containing 83,912 videos for
2,731 distinct signs �lmed by 52 signers in a variety of environments. We propose
that this dataset be used for sign language dictionary retrieval for American Sign
Language (ASL), where a user demonstrates a sign to their own webcam with
the aim of retrieving matching signs from a dictionary. We show that training
supervised machine learning classi�ers with our dataset greatly advances the
state-of-the-art on metrics relevant for dictionary retrieval, achieving, for instance,
62% accuracy and a recall-at-10 of 90%, evaluated entirely on videos of users who
are not present in the training or validation sets.

1 Introduction

Communication in sign language is an essential part of many people’s lives. As 70 million deaf
people world-wide primarily use a sign language (WFD, 2022b), the meaningful inclusion of signing
deaf people requires widespread access to sign languages both in individual communities and
society-wide (§2.1). Towards this, over 100,000 students per year enroll in American Sign Language
(ASL) classes (Looney and Lusin, 2019), and the number of UN countries mandating provision of
services in sign language has grown from 4 in 1995 to 71 in 2021. (WFD, 2022a).
Despite equal access for signing deaf people becoming an increasingly championed value, most
existing information resources (like search engines, news sites, or social media) are written or
spoken, and do not o�er equitable access. Requiring signing deaf people to navigate information
sources in a written language like English necessarily means forcing them to operate in a di�erent,
and potentially non-native language. Many tools built around online information sources assume
written (or, in some cases, spoken) language input and output, and adapting such tools to sign
languages requires a fundamental shift to a visual modality. This has given rise to signi�cant
technical challenges, which have motivated the development of computational methods, from sign
language recognition to generation and translation (Joksimoski et al., 2022).
In this work, we focus on dictionary retrieval for sign languages. Many existing ASL dictionaries
catalog signs with English glosses: an out-of-context translation of a sign into one or more English
words (e.g., lobster, climb_ladder or had_enough). However, English lookup relies on knowing
the English translation, and on signs having a 1:1 relationship with English words, which is often
not the case. Retrieving dictionary entries through a demonstrated sign may be more natural, but is
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computationally more challenging because of the rich visual format and linguistic complexities. We
seek to help address this problem of video-based dictionary retrieval, where a person demonstrates
a single sign by video, and the system returns a ranked list of similar signs. Dictionary retrieval �lls
a practical need for sign language learners, who may see a sign but not know the meaning, and so
cannot look it up using a written translation. Moreover, dictionaries can contribute to documenting
sign languages, and allow established signers to navigate dictionary resources directly in sign
language.
To help advance dictionary retrieval, we collected and release a dataset of isolated ASL signs. Our
dataset is intended to support data-driven machine learning methods by overcoming limitations of
prior isolated sign language recognition (ISLR) datasets (see Table 1 and §2.2). Machine learning-
based development typically requires a large training dataset with appropriate properties (large
vocabulary, minimal label noise, and representation of diverse signers and environments). Existing
video sign datasets are often �lmed in lab settings or scraped from online sources, both of which
limit scale and diversity. Alternatively, datasets constructed by scraping web sources do not typically
acquire participant consent, which erodes community trust, and also lead to challenges in labeling,
as sign languages do not have a standardized annotation system. To overcome such limitations, we
build upon recent crowdsourcing proposals (Bragg et al., 2022) to collect and release ASL Citizen –
the �rst large-scale crowdsourced sign language dataset. Our dataset is the largest isolated sign
dataset to date, newly representative of real-world settings and signer diversity, and collected with
permission and transparency.
Using this new dataset, we adapt previous approaches to ISLR (Li et al., 2020; Selvaraj et al.,
2021) (§2.3) to the dictionary retrieval task, and release a set of baselines for machine learning
researchers to build upon (§4). Our dictionary retrieval problem requires algorithms to return a
ranked list of signs, given an input video. In principle, this output can be satis�ed by a variety of
methods, but we focus on supervised deep learning methods, taking advantage of recent methods
for ISLR. We show that even without algorithmic advances, training and testing on our dataset
doubles ISLR accuracy compared to previous work, despite spanning a larger vocabulary and
using a test set comprised of completely unseen users (§5). We additionally evaluate our dataset
against prior datasets by comparing performance on a subset of overlapping glosses, and by
comparing performance of learned feature representations from models trained on these datasets,
showing further improvements in each case. Finally, through a series of downsampled training set
experiments, we show that while dataset size contributes to our improved performance, it is not
the only contributing factor.
Throughout this research, we have endeavored to follow a culturally-sensitive and participatory
approach to sign language computation. Sign languages are a cornerstone of Deaf culture and
identity.1 In response to growing e�orts in sign language computation, some previous works have
noted that many of these e�orts promote misconceptions or inaccuracies about sign language,
exploit sign language as a commodity, and undermine political movements from Deaf communities
seeking recognition of sign languages (Bragg et al., 2019; De Meulder, 2021; Yin et al., 2021). Other
works question if the technologies being designed actually bene�t Deaf communities, and document
patterns where technologies are rejected by signing communities for being intrusive, clunky, or
insensitive (Harris et al., 2009; Kusters et al., 2017). In this work, we ground our approach in calls
issued by disability scholars for better collaboration with Deaf communities, and problem settings
that focus on solving real needs (Bragg et al., 2019, 2021; Harris et al., 2009; Yin et al., 2021). In
addition to maintaining trust with the communities that sign language technologies are intended to
serve, we demonstrate that aligning with these calls improves data collection and problem de�nition.

In summary, our primary contributions are:

1. We provide a benchmark dataset and metrics for the dictionary retrieval task. Not only
does this application have real utility to the signing community, but it grounds ISLR in a
real-world problem setting, informing data collection and metrics.

2. We release the largest public dataset of isolated signs to date. Our dataset contains high-
quality videos in real-world settings, and was collected and shared with appropriate
permissions from contributors.

1By established standards, we use “Deaf” to refer to cultural identity, and “deaf” to audiological status.
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3. We improve over state-of-the-art ISLR accuracy by more than double, o�ering improved
baselines and code for the community to build upon. We also highlight the impact of data
on model performance, and release our code.

For links to the dataset, code, and additional supplementary materials please visit [link TBA].

2 Background and Related Work

2.1 Sign Languages and Deaf Culture

Sign languages are complex languages with large vocabularies, governed by their own phonological
rules. Analogous to the sounds of speech, signs are composed of largely discrete elements (e.g.,
handshape, location, and movement) according to a complex set of rules (Brentari et al., 1998).
English translations of isolated signs are called glosses, are written in all-caps, and may be single
words or multiple words, typically not corresponding 1-1 to English (just as in any other language
translation). Sign execution varies across contexts, signers, and sociolinguistic groups (McCaskill
et al., 2011). These factors complicate representative data collection and modeling.
Isolated signs like those generally included in sign language dictionaries, are what some have
referred to as “core” parts of the lexicon, and are only a subset of sign languages (Brentari and
Padden, 2001). The “non-core” lexicon is generally not well represented in dictionaries or lexical
databases, and includes complex constructions like depicting verbs, classi�er constructions, and
verbs that use time and space in ways that can be di�cult to decompose into discrete parts (Fischer
and Van der Hulst, 2003; Zwitserlood, 2012). In continuous signing, like in spoken language,
coarticulation – the impact of preceding and following signs – a�ects sign production. Continuous
signing also includes grammar that is often expressed with the face, body, and signing space,
in addition to the hands (Wilbur, 2013). As such, ISLR only address a fraction of sign language
recognition. However, since our goal is dictionary retrieval, this work focuses on isolated signs.
Sign languages also play a critical cultural role in Deaf communities and identity (Hands and Voices,
2022). While our work focuses on American Sign Language (ASL), which is primarily used in
North America, over 300 sign languages are used worldwide. Sign languages have been suppressed
by political and educational authorities to force deaf individuals to integrate into hearing society
by favoring speech and speechreading at the expense of individual welfare (Lane, 1989). These
oppressive movements promote many misconceptions that persist today (e.g., that sign languages
are lesser languages, or that ASL is signed English), and Deaf activists work to combat these ideas
(De Meulder, 2021; Harris et al., 2009; Yin et al., 2021). This cultural context informs our decision to
formulate ISLR as a dictionary retrieval problem, which grounds research in a meaningful real-world
use case.

2.2 Previous ISLR Datasets

Our work focuses on ASL, which has four main public ISLR datasets: WLASL (Li et al., 2020), Purdue
RVL-SLL(Wilbur and Kak, 2006), BOSTON-ASLLVD (Athitsos et al., 2008) and RWTH BOSTON-50
(Zahedi et al., 2005), summarized in Table 1. WLASL o�ers four di�erent vocabulary sizes, the
largest containing 2,000 signs (WLASL-2000 in our tables). While BOSTON-ASLLVD contains a
larger vocabulary of 2,742 signs, the number of videos per sign is limited. As discussed above,
real-world signs vary greatly by user and across demographics due to dialectal (e.g., geographic
region) and sociolectal (e.g., age, gender, identity) variation. Models trained on a small number of
dataset contributors, as seen in prior work, may not generalize well to diverse signers (Athitsos
et al., 2008; Wilbur and Kak, 2006; Zahedi et al., 2005).
Existing datasets employ a variety of collection and labelling techniques, with varied implications
for quality and size. Lab-collected data (Athitsos et al., 2008; Wilbur and Kak, 2006; Zahedi et al.,
2005) is typically high-quality with clean labels, but limited in size, participant diversity, and devoid
of real-world settings. Datasets scraped from the internet may capture more users or environmental
diversity, but varied contributor �uency and di�culty identifying and segmenting signing in videos
impacts quality. Labels for scraped data are often unreliable. To minimize variability in labels, prior
datasets (Joze and Koller, 2018; Li et al., 2020) primarily scrape from ASL teaching resources and
rely on glosses or English text already present in these resources. However, labelling signs has been
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Vocab Videos/
Dataset Size Videos sign Signers Collection Consent

RWTH BOSTON-50 50 483 9.7 3 Deaf Lab 3
Purdue RVL-SLL 39 546 14.0 14 Deaf Lab 3
Boston ASLLVD 2,742 9,794 3.6 6 Deaf Lab 3
WLASL-2000 2,000 21,083 10.5 119 Unknown Scraped 7
ASL Citizen 2,731 83,912 30.7 52 Deaf/HH Crowd 3

Table 1: Prior ISLR datasets for ASL compared to ASL Citizen. HH stands for hard of hearing.

the subject of signi�cant scholarship, and even linguistically trained annotators struggle due to
a lack of conventional notation system (Fenlon et al., 2015; Hochgesang et al., 2018). In addition,
videos from teaching resources are �lmed in professional studio contexts similar to lab-collected
data, and have similar limitations in scale and diversity. Moreover, scraped datasets typically do not
have the required permissions from content creators and hosting platforms.
The design of datasets for sign language development has profound implications around issues of
fairness, ethics, and responsible AI development (Bragg et al., 2021). Sign language data features
identi�able faces and is expensive and labor-intensive to create; consent of all contributors is
paramount. Prior work has proposed crowdsourcing sign language videos (Bragg et al., 2022), and
addressing ethical concerns during collection as a way to collect larger, representative datasets
(Bragg et al., 2020). However, these methods have not been implemented at scale. Our work builds
on this prior work, by implementing a crowdsourcing platform with optimized versions of tasks
proposed in (Bragg et al., 2022) and partnering closely with Deaf community members throughout.
As a result, we present the largest-to-date public sign video dataset, with a large vocabulary and
diverse set of Deaf and hard of hearing signers in heterogeneous everyday settings, collected with
consent.

2.3 Isolated Sign Language Recognition Methods

The last few years have seen increasing research on isolated sign language recognition (ISLR), as
evidenced by the growing number of literature reviews in the space (Adeyanju et al., 2021; Cheok
et al., 2019; Cooper et al., 2011; Er-Rady et al., 2017; Joksimoski et al., 2022; Koller, 2020; Rastgoo et al.,
2021; Tolba and Elons, 2013; Wadhawan and Kumar, 2021). Earlier approaches rely on handcrafted
features and classic machine learning classi�ers (Carmona and Climent, 2012; Forster et al., 2013;
Monteiro et al., 2016; Ong and Bowden, 2004; Vogler and Metaxas, 1997), typically on datasets with
small vocabularies and relatively few videos.
More recent approaches have shifted to deep learning, especially as larger datasets have become
available. Appearance-based methods operate directly on video frames as inputs: approaches include
spatially pooled convolutional neural networks (Li et al., 2020; Rao et al., 2018) and transformers
(Boháček and Hrúz, 2022; De Coster et al., 2020). Alternatively, pose-based methods �t models on
keypoints extracted using human pose models (Boháček and Hrúz, 2022; Li et al., 2020; Selvaraj et al.,
2021) like OpenPose (Cao et al., 2017) or MediaPipe (Lugaresi et al., 2019) for keypoint detection.
Despite the breadth of research approaches, state-of-the-art ISLR methods still have relatively low
recognition performance, achieving around 30% accuracy (Li et al., 2020; Selvaraj et al., 2021) over
realistic vocabulary sizes (2,000+ signs), a level unlikely to be useful for any real use case.

2.4 Sign Language Dictionaries

Dictionaries are a meaningful application of ISLR to Deaf community members (Bragg et al., 2019;
Huenerfauth and Hanson, 2009): in addition to playing a cultural role in language documentation,
they are valuable tools for language users and learners. However, creating e�ective sign lookup
systems is di�cult. English-to-ASL dictionaries (e.g. (Signing Savvy, 2022)) accept written queries
and so can leverage natural language processing (NLP) techniques for matching, but ASL-to-English
dictionaries or ASL-to-ASL dictionaries cannot because there is no standard sign language writing
system.
To address these challenges, two main approaches are used: feature-based lookup and example-
based lookup. In feature-based lookup, users specify various parameters of the sign they are seeking
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(e.g., the handshape used, the location on the body where the sign is made, the motion of the sign,
etc.), and a list of top matching signs are returned (Bragg et al., 2015). While this simpli�es the
lookup problem, unlike English spelling, these features are not conventional and are not widely
used or taught, so users may not be familiar with how to make use of them. Novice learners may
especially have trouble noticing and remembering these parameters.
In the case of example-based lookup, users demonstrate a sign by video, and a list of top matching
signs are returned. While this may be more accessible for users, it is more challenging computation-
ally, now requiring video-based processing to complete the lookup (Xu et al., 2022). Because this is
signi�cantly more challenging and largely unsolved, human-computer interaction (HCI) research
has primarily focused on understanding potential dictionary use through wizard-of-oz methods and
analysing metrics (Alonzo et al., 2019; Hariharan et al., 2018; Hassan et al., 2021, 2022). Our work
advances the state of ISLR for dictionary retrieval, potentially enabling functional example-based
dictionaries to be created and studied.

3 ASL Citizen Dataset Creation

3.1 Data Collection

We build on prior work (Bragg et al., 2022), which piloted the �rst crowdsourcing tasks for sign
language data collection in a small user study. In this work, we scale data collection with a longer-
term deployment with �uent Deaf signers. We deployed a similar collection method to that described
in (Bragg et al., 2022), but with enhancements designed to improve recording e�ciency and data
quality (e.g. displaying a target body contour on the webcam feed to help participants stay in
frame). This method secures explicit consent from participants, and curates data appropriate for
work on dictionary lookup; participants are asked to contribute videos for a communal dictionary,
recording videos in real-world settings, similar to real-world dictionary queries. The task design
also eliminates labelling challenges by collecting pre-labelled content. The Appendix provides
details on design changes compared to prior work and e�ects.
On the platform, participants were informed that their videos would contribute to a communal
dictionary that displays signing diversity and be released in a public research dataset, and provided
explicit consent. Next, each participant was given the full vocabulary of 2,731 signs (from ASL-LEX
(Caselli et al., 2017; Sehyr et al., 2021)), sorted such that signs with the fewest videos are shown
�rst, with the goal of encouraging our dataset to be relatively balanced across signs. For each sign,
they �rst viewed a “seed” video of an isolated sign �lmed by a highly pro�cient, trained ASL model.
This “seed signer” was a paid research member, and used a high-resolution camera and wireless
mouse to ensure recording quality. Participants were then prompted to record their own version of
the sign they just saw demonstrated. As in (Bragg et al., 2022), participants could re-play the seed
video or their own videos, and re-record or delete videos. We provided an optional English gloss,
hidden by default to encourage focus on the ASL. For every 300 videos, participants received a $30
gift card, for up to 3,000 signs. Those who completed the vocabulary re-visited signs with the least
recordings. Providing basic demographics was optional.
We took several steps to help ensure that our data collection was culturally sensitive and participa-
tory. Our research team is highly interdisciplinary, including experts in computer vision, NLP, HCI,
Deaf studies, and ASL linguistics. This enabled us to identify and address challenges to ISLR in a
comprehensive and human-centered way. Our team included several Deaf members and hearing
people �uent in ASL and active in the Deaf community. Deaf researchers were involved in every
aspect of the research and made direct contact with participants. All recruitment and consent
materials were presented in an ASL-�rst format, featuring short ASL videos. Participants were
recruited through relevant email lists and snowball sampling of Deaf researchers’ social networks.
All procedures were reviewed and approved by IRB.2

3.2 Data Veri�cation and Cleaning

To help ensure data quality, we engaged in veri�cation and cleaning procedures under close guidance
from our ethics review board. First, we removed empty videos automatically, by removing any

2Both Microsoft and Boston University IRBs reviewed the project, with Microsoft serving as the IRB of
record (#418).
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Train Val Test
Users 35 6 11
Videos 40,605 10,309 32,999
User distribution 60% F 83% F 55% F
Video distribution 54% F 71% F 55% F

Table 2: Statistics for ASL Citizen dataset splits. Figure 1: Random ASL Citizen video stillframes.

videos that were too small (under 150 KB) or in which YOLOv3 (Redmon and Farhadi, 2018) did not
detect a person. Altogether, this �lter excluded 50 videos. We also engaged in a manual review of
the �rst and last videos recorded by each participant and random samples throughout, checking for
potential sensitive content or anomalous behavior. We removed one user’s videos, who recorded
many videos without a sign in them. To protect the privacy of people who appear in the background
of the video (i.e. besides the participant), we used YOLOv3 to detect if multiple people were present.
We also manually identi�ed sets of videos where certi�cates or other personally identifying objects
were visible in the background. For both these sets of videos, we blurred the background using
the user segmentation from MediaPipe holistic. This gave us a total of 911 videos with blurred
background, which appear in training, validation, and test sets.

3.3 ASL Citizen Dataset Benchmark for Dictionary Retrieval

Our �nal cleaned dataset, ASL Citizen, contains a total of 83,912 videos corresponding to 2,731
signs recorded by 52 participants, including the seed signer (Table 1).3 This is the largest ISLR
dataset for ASL (or any other sign language) to date. We standardize our glosses to those previously
documented by ASL-LEX (Caselli et al., 2017), a database of lexical and phonological properties of
signs. This provides standardized sign identi�ers independent of English gloss (because glosses
are often ambiguous), and allows for researchers to make use of linguistic annotations provided
by ASL-LEX (e.g., the handshape of each sign in our dataset). Each sign has multiple recordings
(µ = 30.7, σ = 1.9).
Of the signers represented in the dataset, 49 identify as Deaf and 3 as hard of hearing; 32 as female
and 20 as male; and with ages ranging from 20 to 72 years old (µ = 36.16, σ = 14.2, n = 49).
These signers come from 16 U.S. states, with between two and 65 years of ASL experience (µ =
30, σ = 15.12, n = 48).
We expect our videos to be consistent with our chosen dictionary retrieval task (i.e. participants
resemble webcam users demonstrating signs to a dictionary). All users were informed they were
contributing to a dictionary and recorded in real-world settings. Since ASL Citizen videos were
collected in a variety of settings, they contain varied illumination, background, resolution, and
angle. Since our videos are self-recorded, there is also variability in when users start and �nish
signing in videos (i.e. amount of padding), and the speed, repetition, and execution of signs. We
consider this variability to be valuable as it is within the scope of “in-the-wild” dictionary queries,
and do not attempt to �lter or standardize these variables.

Dataset Splits. We also release standardized splits of our 52 users into training, validation and
test sets (Table 2), attempting to balance by female-to-male gender ratio (our dataset does not
contain videos from signers who identi�ed themselves as non-binary). Importantly, our splits are
established such that users in the validation and test sets are unseen during training. While previous
work randomly split videos (Li et al., 2020) (so users in the test set may be already seen in training),
we felt it was critical to evaluate on unseen users to align with our dictionary retrieval problem; it is
unlikely that a user looking up a sign would be in the training set of a deployed model. Accordingly,
the seed signer is placed in the training split. Finally, in our splits, we sought to provide a large test
set. While this still leaves su�cient videos for training (more than 2.5× that of the previous largest

3Please note that in this paper, we worked with ASL Citizen version 0.9. All statistics about the dataset
(number of videos etc.) refer to this dataset version, and all experiments were run with this dataset version.
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dataset (Li et al., 2020)), we reasoned that a large test set with multiple users would not only o�er
more robust estimates of performance, but also leave the potential for a wider range of methods
(e.g., unsupervised domain adaptation) in future work.

Sign Ranking andMetrics. Our dictionary retrieval problem requires models to return a ranked
list of signs. We consider standard information retrieval metrics: recall-at-K (for K=1, 5, and 10,
where recall-at-1 is the same as accuracy), discounted cumulative gain (DCG) and mean reciprocal
rank (MRR). Recall-at-K, measured by determining if the correct sign is in the top K rankings, allows
us to consider scenarios where users may look at only the �rst K signs retrieved in response to their
query (Hassan et al., 2021). DCG and MRR, on the other hand, evaluate the overall ranking of the
correct sign in the entire list. For all of these metrics, a higher score indicates the correct sign is
earlier in the ranking, but since DCG uses a log scale, it is more sensitive to order at the top of the
ranking. The Appendix provides formulas and additional details.

4 Methods and Training Details

We train two fundamentally di�erent types of machine learning methods on the ASL Citizen dataset:
an appearance-based approach, I3D, which is based on a 3D convolutional network applied directly
to the frames of the video (Carreira and Zisserman, 2017); and a pose-based approach, ST-GCN,
which preprocesses the video to extract pose information, on which we train a temporal graph
convolutional network (Yan et al., 2018). Both are classi�ers with an output space equal to the
size of the vocabulary. For both, to generate a ranked list of retrieved signs, we sort the output
probabilities across labels.

4.1 Data Preprocessing

For our I3D model, we preprocess videos by standardizing to 64 frames. Due to variance in sign
length and user execution, our dataset videos di�er in length. While previous works use random
temporal crops to standardize frame lengths during training (Li et al., 2020), we reasoned this
practice might alter sign semantics: some signs are compounds of multiple signs, and temporal
cropping may reduce the sign to just one root sign. Instead, we standardize training and evaluation
videos by skipping frames: for videos longer than 95 frames, we skip every other frame, and for
videos longer than 159 frames, we take every third frame. Next, videos shorter than 64 frames are
padded with the �rst or last frame, and longer videos had even numbers of frames removed from
the start and end. During training, we augmented with random horizontal �ips to simulate left and
right handed signers.
For our ST-GCN model, we extracted keypoints using MediaPipe holistic. We use a sparse set of 27
keypoints previously established by OpenHands (Selvaraj et al., 2021). Following previous practice,
extracted keypoints are center scaled and normalized using the distance between the shoulder
keypoints. Since our videos contain a higher frame-rate than ISLR datasets analyzed by OpenHands,
we cap the maximum frames to 128, and downsample frames evenly if the video is longer. As
with OpenHands, we apply random shearing and rotation transformations during training as data
augmentation.

4.2 Model Structure and Training

We train our I3D model for a maximum of 75 epochs using learning rate 1e-3 and weight decay 1e-8,
with an Adam optimizer and ReduceLRonPlateau scheduler with patience 5. As we observed that
a cross-entropy loss on the entire video alone led to poor convergence, we also employ a weakly
supervised per-frame loss previously used in the Charades Challenge (CVPR 2017 Workshop on
Visual Understanding Across Modalities, 2017), where the cross-entropy loss is also applied to
each frame in the video (predictions for each frame are produced using linear interpolation of the
temporal dimension of the I3D model). Our �nal loss is an average of the full-video cross-entropy
loss and this per-frame cross-entropy loss.
We train our ST-GCN model for a maximum of 75 epochs using a learning rate of 1e-3 using an
Adam optimizer and a Cosine Annealing scheduler.
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Model Train Data Test Data DCG MRR Rec@1 Rec@5 Rec@10

I3D ASL Citizen ASL Citizen 0.7843 0.7247 0.6210 0.8536 0.9000
ST-GCN ASL Citizen ASL Citizen 0.7639 0.7001 0.5965 0.8267 0.8780

Table 3: Appearance and pose-based results and baselines. The best results on the ASL Citizen test
set are in bold. These results represent a phase transition in isolated sign language recognition, up
from previous best results in the mid-30% for accuracy (recall-at-1).

Model Train Data Test Data DCG MRR Rec@1 Rec@5 Rec@10

I3D ASL Citizen ASL Citizen 0.7843 0.7247 0.6210 0.8536 0.9000
I3D WLASL-2000 WLASL-2000 -– -– 0.3248 0.5731 0.6631
I3D ASL Citizen Subset 0.8573 0.8159 0.7338 0.9163 0.9466
I3D WLASL-2000 Subset 0.2796 0.1479 0.0850 0.2007 0.2748

ST-GCN ASL Citizen ASL Citizen 0.7639 0.7001 0.5965 0.8267 0.8780
ST-GCN WLASL-2000 WLASL-2000 – – 0.2140 – –

Table 4: Results comparing across datasets between ASL Citizen, the prior WLASL-2000 datasets,
and a subset of ASL Citizen “matched” to WLASL-2000. The best results on the ASL Citizen test
set are in bold; on the Subset dataset are in italics; and on other datasets are underlined. The grey
rows are reproduced from Table 3. Model performance di�ers substantially between ASL Citizen
than WLASL, even on an aligned subset of data.

For each model, we selected the best-performing checkpoint on the validation dataset for analysis
on our test dataset. Code and model weights will be released publicly alongside our dataset.

5 Results and Analysis

5.1 Novel Benchmarks

We trained our appearance-based I3D model (Carreira and Zisserman, 2017) on the ASL Citizen
dataset to establish an initial baseline, which achieves a top-1 accuracy (recall-at-1) of 62.10%, with
a DCG of 0.784 and MRR of 0.725 (see the third row in Table 3).4 This accuracy is notable, given the
di�culty of the problem – our dataset has completely unseen users, and spans one of the largest
vocabulary sizes in ISLR to date (2,731 signs). The pose-based ST-GCN model performs similarly,
but consistently worse by a few percentage points on all metrics, but still substantially better than
any previous reported results on datasets of similar size and complexity. For comparison, due to the
number of classes, random guessing would only yield 0.04% expected accuracy.
In previous work, appearance-based and pose-based models have generally shown competitive
performance. Pose-based methods reduce information and potentially introduce errors at the
keypoint extraction step, at the bene�t of making features relevant for signs more accessible and
standardized compared to raw pixels. However, this standardization may not outweigh errors and
loss of information when the training dataset is diverse enough to train general appearance-based
methods. Consistent with this, we note that our pose- based model performance slightly lags behind
that of our appearance-based model.

5.2 Comparison to Prior Datasets

We subsequently seek to understand how much our dataset advances the performance of ISLR
models in ASL, compared to previous datasets. To do this, we compared our model trained on our
dataset, to a public model trained on the previously largest ASL ISLR dataset, WLASL-2000 (Li et al.,
2020); see Table 1. We made no changes to model architecture compared to the ASL Citizen I3D
model, meaning that any improvements are because of the training data, not model capacity.

4Please note that results may vary slightly for future iterations of the dataset and paper. We ask that
authors compare to the most up-do-date numbers.
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Model Train Data Test Data DCG MRR Rec@1 Rec@5 Rec@10

I3D ASL Citizen ASL Citizen 0.7843 0.7247 0.6210 0.8536 0.9000

I3D Features ASL Citizen ASL Citizen 0.7427 0.6707 0.5493 0.8215 0.8847
I3D Features WLASL-2000 ASL Citizen 0.3156 0.1795 0.0986 0.2538 0.3443
I3D Features Kinetics ASL Citizen 0.1236 0.0131 0.0043 0.0139 0.0225
I3D Features ASL Citizen Subset 0.8295 0.7787 0.6787 0.9032 0.9450
I3D Features WLASL-2000 Subset 0.4048 0.2716 0.1662 0.3773 0.4854

Table 5: Results comparing feature representations with ranking by cosine-similarity. The grey row
is copied from Table 3. Across datasets, the representations learned on the ASL Citizen training
data are substantially better than those learned on WLASL-2000 or Kinetics.

A direct comparison of these models is challenging because these models use independent gloss
mappings. Not only does this mean that the number of classes di�ers between models, but the
same English gloss in our model may refer to a di�erent sign in WLASL-2000. We overcome this
challenge by comparing the models in two distinct ways (benchmarks in Table 4).
First, we directly compared metrics on our test set to previously reported accuracy on the WLASL-
2000 test set. While this comparison does not account for potential di�erences in test set di�culty,
we believe our test dataset is more challenging than that of WLASL-2000. First, unlike WLASL-2000,
we evaluate on unseen signers. Second, our vocabulary size is larger. Under this comparison, our
model achieves a top-1 accuracy of 62.10% on the ASL Citizen test set, while (Li et al., 2020) reports
a top-1 accuracy of 32.48% on the WLASL-2000 test set.
Second, we reduced our test set to a subset of glosses that we were con�dent referred to the same
sign in both ASL Citizen and WLASL-2000, and used this test set to compare models trained on ASL
Citizen and WLASL-2000. We used a reduced version of ASL Citizen’s test set to ensure it would
not contain anyone seen during training by either model, allowing for a more fair comparison. We
excluded any sign with a documented variant in either dataset, and matched glosses only if there
was an exact match in English gloss between the two datasets. This procedure resulted in a reduced
dataset with 1,075 glosses (“Subset” in our tables). To ensure these glosses referred to the same
signs, an author �uent in ASL examined one example per sign from each dataset for 100 random
signs, and did not �nd any discrepancies. To control for both models outputting di�erent numbers
of classes, we recalculated the softmax on only the logits corresponding to the 1,075 overlapping
glosses (e�ectively excluding predictions for classes outside of this subset). Under this comparison,
top-1 accuracy is 73.38% for our model vs. 8.50% for the WLASL-2000 model. We hypothesize that
the drastic drop in accuracy for WLASL-2000 also relative to its original test set (32.48%) is because
the model was originally evaluated on seen users, and fails to generalize to unseen users.
Together, these results suggest that our dataset signi�cantly advances the state-of-the-art in ISLR
performance for ASL. In the most naive comparison with independent test sets, our model doubles
accuracy over the state-of-the-art (62.10% vs. 32.48%). In more standardized comparisons where
both models are evaluated on the same test set, our model outperforms prior results by 8.6 times
(73.38% vs. 8.50%).

5.3 Comparison of Learned Feature Representation

Finally, we reasoned that while the classi�ers of the ASL Citizen and WLASL-2000 models may
predict di�erent sets of signs, both models may still be learning features to recognize signs more
generally. To assess this, we extracted the globally pooled feature representation before the classi�-
cation layer of each model, and built a simple nearest-neighbor classi�er using the cosine distance
from representations of videos in the ASL Citizen training dataset to classify ASL Citizen test data.
We report accuracies for this classi�er on both the full ASL Citizen test dataset, and the reduced
overlapping version, in Table 5. For the full test dataset, our model achieves a top-1 accuracy of
54.93%, while the WLASL-2000 model achieves 9.86% accuracy. For the reduced overlap, our model
achieves a top-1 accuracy of 67.87%, while the WLASL-2000 model achieves 16.62% accuracy. This
suggests that our dataset enables learning a more robust representation of ASL. We similarly test
the performance of I3D feature representations trained on Kinetics (a large-scale human action
recognition dataset) (Carreira and Zisserman, 2017): the reported results, which are close to ran-
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DCG MRR R@1 R@5 R@10

0% 0.103 0.002 0.000 0.002 0.004
25% 0.387 0.257 0.160 0.353 0.453
32% 0.380 0.250 0.157 0.342 0.439

*47% 0.665 0.580 0.466 0.719 0.791
50% 0.668 0.583 0.467 0.725 0.800
75% 0.724 0.650 0.536 0.792 0.854

100% 0.784 0.725 0.621 0.854 0.900

Table 6: Performance of models with down-
sampled ASL Citizen training sets. 25% of ASL
Citizen gives comparable results to prior ap-
proaches, and improvement has not totally
asymptoted at 100%. *The 47% split uniformly
sampled videos from each sign.

Figure 2: Impact of training data size on recall
scores: more videos per sign substantially im-
proves performance. We �t a polynomial func-
tion to each sequence.

dom performance, further emphasize out-of-domain models do not generalize to sign language
recognition.

5.4 Impact of Dataset Size

Finally, to understand how scaling data collection a�ects model performance, we systematically
downsampled the training dataset. We generated �ve random splits: 25% of the original training
dataset (10,916 videos), 50% (20,302 videos), 75% (30,453 videos), matching the training dataset
size of WLASL-2000 (14,055 videos, 32% of our dataset size), and matching the average number of
examples per class for WLASL-2000 (19,103 videos, 47% of our dataset size). For all these splits, we
ensured that each sign was represented by at least 4 samples, but otherwise sampled at random.
We trained an appearance-based I3D model on each of these splits and report results in Table 6, and
also experimented with a 0-shot model with no training data by testing performance on an I3D
model with randomly initialized weights.
Our results con�rm that the scale of our training dataset is critical to performance; as training
dataset size decreases, so does accuracy on our test dataset (Figure 2). Interestingly, we observe
that when matching the average number of training examples per sign in WLASL-2000 (7 per sign),
our model still out-performs previously reported baselines for ISLR (46.59% vs. 32.48%), suggesting
the scale of training data may not be the only factor in our improved performance.

6 Discussion and Conclusion

In this work, we introduce a problem formulation for ISLR in the form of dictionary retrieval,
provide the largest ISLR dataset to date through a crowdsourcing initiative, and release metrics and
baselines showing that our new dataset signi�cantly advances the state-of-the-art for ISLR in ASL.
Our dictionary retrieval formulation is intended to limit misconceptions surrounding sign language.
ISLR is a more computationally tractable problem than continuous sign language recognition and
signi�cantly more feasible than sign language translation, and has more immediate applications that
can bene�t Deaf people. Continuous sign recognition requires a system to handle co-articulation,
�ngerspelling, facial expressions, depictions, and classi�ers constructions. Translation requires not
only accurate continuous sign recognition, but the ability to move from the syntax and grammar
of ASL to English and vice versa. A researcher without this domain expertise may assume that
tokenizing a video into a sequence of signs and applying ISLR to these tokens is su�cient for
translation. Underestimating the complexity of these aspects of sign language and translation has
historically led to objections from Deaf communities (De Meulder, 2021; Erard, 2017; Harris et al.,
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2009; Kusters et al., 2017). The dataset presented here will enable technologies like dictionary
search, that are focused on reliably classifying signs and do not require considering syntax or even
optimal English translation. We discourage researchers from attempting to use this dataset alone
(e.g., without also learning from continuous datasets) for more complex applications.
Our data collection process re�ects this dictionary lookup problem formulation and yields a large-
scale, high-quality ISLR dataset. Traditional lab collection techniques o�er high-quality data
but limit diversity, whereas scraping data may promise diversity while introducing labelling and
�uency errors and compromising consent. For example, scraped videos may degrade quality of
labels as videos may only be associated with unstructured English text, or signed by novices.
By crowdsourcing data, we balance the trade-o� between size, quality and diversity. First, our
scalable platform allows users to contribute from their homes and other everyday spaces, capturing
real-world diversity and use of signing space representative of dictionary applications. Second, by
prompting our contributors with speci�c signs to demonstrate, we have higher con�dence in our
labels, which are also automatically generated. Third, recruiting �uent signers from trusted groups
ensures our collected data is high-quality and re�ects the conventions of ASL. Our study informs
future data collection e�orts: participatory approaches with meaningful contribution from Deaf
researchers can yield not just larger datasets, but higher quality data.
While our benchmark models achieve high levels of ISLR performance on unseen signers, future
work is still required to fully solve the dictionary retrieval problem. We have only tackled dictionary
retrieval in its cleanest form, and real-life dictionaries present many use cases not fully addressed
in this work. First, our supervised models operate on a �xed vocabulary. These models are unable
to cope with signs outside of this vocabulary. Since, like spoken languages, sign languages are
dynamic, with new signs emerging regularly, future work should consider methods that can adapt
to signs that were unseen at training time. Second, we evaluated our models on �uent Deaf signers
who can expertly replicate signs. Novice signers would likely have di�culty recalling a sign, and
may not execute it perfectly. Therefore, we expect a performance gap for these users, which future
models could address.
Future work also includes deepening evaluation. While we considered DCG, MRR, and recall-at-k
as metrics in this work, these metrics may not fully align with user preferences. These metrics
treat all errors equivalently regardless of severity (with a binary evaluation of relevance). However,
metrics that better capture overall list relevance (e.g., by weighting relevance of signs with similar
meanings or visual appearance high in the list) may re�ect a better user experience (Hassan et al.,
2021). Deployed dictionaries also must meet performance measures beyond accuracy (like ease of
use or speed). Finally, although we report overall performance, our I3D model achieves accuracies
ranging from 43% to 75% across users. Real-world applications are becoming increasingly viable,
and future work should explore whether ISLR models are equitable – if there are disparities between
demographic groups served by models – and how such performance biases might be addressed.
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A Platform modi�cations

Changes to the platform introduced in prior work (Bragg et al., 2020), with the goal of helping to
meet our data collection needs are described below.

Platform change Intended impact on data collection
Improved recording task �ow (automatic count-
down to recording start, video upload in the back-
ground)

Scale: a more e�cient contribution process
enables participants to contribute more
videos in a set amount of time

Visual design overhaul (updated color scheme,
button design, and page layouts; replaced one-o�
video players with standard video players)

Scale: a better user experience attracts and
encourages use, and increases trust in the
platform creators, which lowers barriers to
contributing

Updated platform structure and navigation (up-
dated landing page with direct links to contribute;
updated navigation links in header; updated info
page with more project details in ASL and English)

Scale: a reduced learning curve lets partici-
pants contribute more data, and increased
trust lowers barriers to contributing

Infrastructure scaling (set up infrastructure to han-
dle many parallel contributions, large data storage,
backup scripts)

Scale: provides technical capabilities to col-
lect data at scale

Removed participant ability to share content with
one another in real-time (instead creating two-
phased implementation of collection followed by
release)

Scale: removes potential for viewing o�-
putting content from other users

New set of seed sign videos executed by a well-
known �uent signer who is not white-presenting

Participant diversity: representation cre-
ates a more welcoming environment and
fosters contributions from a wider range
of participants

Improved personal data view (enabling users to
search through their own videos, sorting videos
and demographics into tabs)

Data quality: participants can more easily
review and update contributions

Overlaid the outline of a human �gure on the we-
bcam feed

Data quality: videos are more likely to cap-
ture the entire upper body and are more
standardized across participants

Table 7: Summary of platform feature changes, alongside potential impacts on the contributor and
resulting dataset.
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B Dictionary Retrieval Metrics

For a given query, if i is the placement of the desired gloss in the returned list of glosses, we calculate
metrics using the following formulae:

• Discounted Cumulative Gain = 1
log2(i+1) , ranges in [ε, 1] with 1 indicating that the correct

gloss is always the top ranked item, and ε = 1
log2(N+1) is the smallest attainable score

when the correct gloss is ranked last (in our case, N = 2729 so ε = 0.088). A completely
random ordering with give an average DCG of approximately 0.15.

• Mean Reciprocal Rank = 1
i , ranges in [ε, 1] with 1 indicating that the correct class is always

the top ranked item, and ε = 1
N = 0.00037. A completely random ordering will give an

average MRR of approximately 0.0032.

The overall scores reported are averages of these metrics across respective data splits (e.g., average
over all test instances).
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