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Abstract

We create a new online reduction of multiclass classification to binary classifica-
tion for which training and prediction time scale logarithmically with the number
of classes. We show that several simple techniques give rise to an algorithm that
can compete with one-against-all in both space and predictive power while offer-
ing exponential improvements in speed when the number of classes is large.

1 Introduction

Can we effectively predict one of K classes in polylogarithmic time in K ? This question gives rise
to the area of extreme multiclass classification [1} 13} 14} 8 [18} 20} 27], in which K is very large. If
efficiency is not a concern, the most common and generally effective representation for multiclass
prediction is a one-against-all (OAA) structure. Here, inference consists of computing a score for
each class and returning the class with the maximum score. An attractive strategy for picking one of
K items efficiently is to use a tree; unfortunately, this often comes at the cost of increased error.

A general replacement for the one-against-all approach must satisfy a difficult set of desiderata.

e High accuracy: The approach should provide accuracy competitive with OAA, a remark-
ably strong baseline[21]] which is the standard “output layer” of many learning systems
such as winners of the ImageNet contest [12,23].

e High speed at training time and test time: A multiclass classifier must spend at least
Q(log K') time [8]]) so this is a natural benchmark to optimize against.

e Online operation: Many learning algorithms use either online updates or mini-batch up-
dates. Approaches satisfying this constraint can be easily composed into an end-to-end
learning system for solving complex problems like image recognition. For algorithms
which operate in batch fashion, online components can be easily used.

e Linear space: In order to have a drop-in replacement for OAA, an approach must not take
much more space than OAA. Memory is at a premium when K is very large, especially for
models trained on GPUs, or deployed to small devices.

We use an OAA-like structure to make a final prediction, but instead of scoring every class, we only
score a small subset of O(log K) classes. We call this “one-against-some” (OAS). How can you
efficiently determine what classes should be scored? We use a dynamically built tree to efficiently
whittle down the set of candidate classes. The goal of the tree is to maximize the recall of the
candidate set so we call this approach “The Recall Tree.”

Figure|[I|depicts the inference procedure for the Recall Tree: an example is routed through a tree until
termination, and then the set of eligible classes compete to predict the label. We use this inference
procedure at training time, to facilitate end-to-end joint optimization of the predictors at each internal
node in the tree (the “routers”), the tree structure, and the final OAS predictors.
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Figure 1: Left: Pseudocode for prediction where f,(x) evaluates the node’s route, Predict, () eval-

uates a per-class regressor, re/czll(o) is an empirical bound on the recall of a node (o) (see sec-
tion[3.1), and = A {(n : 1)} indicates the addition of a sparse feature with index n and value 1.
Right: An example is routed through the tree to a leaf node associated with a set of eligible classes.

The Recall Tree achieves good accuracy, improving on previous online approaches [8|] and some-
times surpassing the OAA baseline. The algorithm requires only poly(log K) time during training
and testing. In practice, the computational benefits are substantial when K > IOOOEI The Recall
Tree constructs a tree and learns parameters in a fully online manner as a reduction allowing com-
position with systems trained via online updates. All of this requires only a factor of 2 more space
than OAA approaches.

Our contributions are the following:

e We propose a new online tree construction algorithm which jointly optimizes the construc-
tion of the tree, the routers and the underlying OAS predictors (see section [3.1).

e We analyze elements of the algorithm, including a new boosting bound (see section
on multiclass classification performance and a representational trick which allows the al-
gorithm to perform well if either a tree representation does well or a OAA representation
does well as discussed in section[3.2]

e We experiment with the new algorithm, both to analyze its performance relative to baselines
and understand the impact of design decisions via ablation experiments.

The net effect is a theoretically motivated algorithm which empirically performs well providing a
plausible replacement for the standard one-against-all approach in the large K setting.

1.1 Prior Work

The LOMTree[7, 18] is the closest prior work. It misses on space requirements: up to a factor of
64 more space than OAA was used experimentally. Despite working with radically less space we
show the Recall Tree typically provides better predictive performance. The key differences here
are algorithmic: A tighter reduction at internal nodes and the one-against-some approach yields
generally better performance despite much tighter resource constraints.

Boosting trees [[13] for multiclass learning [24] on a generalized notion of entropy are known to
results in low 0/1 loss. Relative to these works we show how to efficiently achieve weak learning
by reduction to binary classification making this approach empirically practical. We also address a
structural issue in the multiclass analysis (see section[3.3).

Other approaches such as hierarchical softmax (HSM) and the the Filter Tree [3] use a fixed tree
structure [18]]. In domains in which there is no prespecified tree hierarchy, using a random tree
structure can lead to considerable underperformance as shown previously [1} 18]].

'Our implementation of baseline approaches, including OAA, involve vectorized computations that increase
throughput by a factor of 10 to 20, making them much more difficult to outpace than naive implementations.
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(a) An input labeled example descends the tree (b) Here, entropy computes the empirical en-
updating routers at the nodes until reaching a tropy of labels incident onanodAe without and with
leaf or a recall estimate declines, leading to an (respectively) an extra label y. H|jcf; is an estimate
early break. Here, update_candidates updates of the average entropy if the example is routed left.
the set of candidate labels at each node and Learn,, (z, w, y) is an importance-weighted update

update_predictors updates the one-against- to the binary classifier f(x) for node n with fea-

some predictors upon breaking; and re/csll(o) is tures z, label y, and weight w.

a an empirical bound on the recall of a node (o)

(see section[3.T).

Figure 2: Learning procedure.

Most other approaches in extreme classification either do not work online [[17,[20] or only focus on
speeding up either prediction time or training time but not both. Most of the works that enjoy sub-
linear inference time (but (super)linear training time) are based on tree decomposition approaches.
In [17] the authors try to add tree structure learning to HSM via iteratively clustering the classes.
While the end result is a classifier whose inference time scales logarithmically with the number of
classes, the clustering steps are batch and scale poorly with the number of classes. Similar remarks
apply to [1]] where the authors propose to learn a tree by solving an eigenvalue problem after (OAA)
training. The work of [27] is similar in spirit to ours, as the authors propose to learn a label filter
to reduce the number of candidate classes in an OAA approach. However they learn the tree after
training the underlying OAA predictors while here we learn and, more crucially, use the tree during
training of the OAS predictors. Among the approaches that speed up training time we distinguish
exact ones [9, [25]] that have only been proposed for particular loss functions and approximate ones
such as negative sampling as used e.g. in [26]. Though these techniques do not address inference
time, separate procedures for speeding up inference (given a trained model) have been proposed
[22]. However, such two step procedures can lead to substantially suboptimal results.

2 The Recall Tree Algorithm

Here we present a concrete description of the Recall Tree and defer all theoretical results that mo-
tivate our decisions to the next section. The Recall Tree maintains one predictor for each class and
a tree whose purpose is to eliminate predictors from consideration. We refer to the per-class pre-
dictors as one-against-some (OAS) predictors. The tree creates a high recall set of candidate classes
and then leverages the OAS predictors to achieve precision. Crucially, the leaves of the tree do not
partition the set of classes: classes can (and do) have support at multiple leaves.

Figure [2| outlines the learning procedures, which we now describe in more detail. Each node in the
tree maintains a set of statistics. First, each node n maintains a router, denoted f,,, that maps an
example to either a left or right child. This router is implemented as a binary classifier. Second,
each node maintains a histogram of the labels of all training examples that have been routed to,
or through, that node. This histogram is used in two ways: (1) the most frequent classes form the



competitor set for the OAS predictors; (2) the histogram is used to decide whether the statistics at
each node can be trusted. This is a crucial issue with trees because a child node sees fewer data
than its parent. Therefore we do not simply rely on the empirical recall (i.e. the observed fraction
of labels that fall into the most frequent F' labels at this node) of a node since such estimate can
have considerable variance at deep nodes. Instead, we use a lower bound of the true recall which we
compute via an empirical Bernstein inequality (see Section [3.1).

Learning the predictors for each class In Figure 2al update_predictors updates the candidate
set predictors using the standard OAA strategy restricted to the set of eligible classes. If the true
label is not in the F' most frequent classes at this node then no update occurs.

Learning the set of candidates in each node In Figure 2ajupdate_candidates updates the count
of the true label at this node. At each node, the most frequent F' labels are the candidate set.

Learning the routers at each node In Figure 2bjupdate_router updates the router at a node by
optimizing the decrease in the entropy of the label distribution (the label entropy) due to routing. This
is in accordance with our theory (Section [3.3)). The label entropy for a node is estimated using the
empirical counts of each class label entering the node. These counts are reliable as update_router
is only called for the root or nodes whose true recall bound is better than their children. The expected
label entropy after routing is estimated by averaging the estimated label entropy of each child node,
weighted by the fraction of examples routing left or right. Finally, we compute the advantage of
routing left vs. right by taking the difference of the expected label entropies for routing left vs. right.
The sign of this difference determines the binary label for updating the router.

Tree depth control We calculate a lower bound recall(n) on the true recall of node n (Section ,
halting descent as in Figure As we descend the tree, the bound first increases (empirical recall
increases) then declines (variance increases). We also limit the maximum depth d of the tree. This
parameter is typically not operative but adds an additional safety check and sees some use on datasets
where multipasses are employed.

3 Theoretical Motivation

Online construction of an optimal logarithmic time predictor for multiclass classification given an
arbitrary fixed representation at each node appears deeply intractable. A primary difficulty is that
decisions have to be hard since we cannot afford to maintain a distribution over all class labels.
Choosing a classifier so as to minimize error rate has been considered for cryptographic primi-
tives [3]] so it is plausibly hard on averager rather than merely hard in the worst case. Furthermore,
the joint optimization of all predictors does not nicely decompose into independent problems. Solv-
ing the above problems requires an implausible break-through in complexity theory which we do not
achieve here. Instead, we use learning theory to assist the design by analyzing various simplifications
of the problem.

3.1 One-Against-Some Prediction and Recall

For binary classification, branching programs [15]] result in exponentially more succinct representa-
tions than decision trees [[L3]] by joining nodes to create directed acyclic graphs. The key observation
is that nodes in the same level with a similar distribution over class labels can be joined into one
node, implying that the number of nodes at one level is only §(1/7) where ~ is the weak learning
parameter rather than exponential in the depth. This approach generally fails in the multiclass setting
because covering the simplex of multiclass label distributions requires (K — 1)9(1/ ) nodes.

One easy special case exists. When the distribution over class labels is skewed so one label is the
majority class, learning a minimum entropy classifier is equivalent to predicting whether the class
is the majority or not. There are only K possible OAS predictors of this sort so maintaining one for
each class label is computationally tractable.

Using OAS classifiers creates a limited branching program structure over predictions. Aside from
the space savings generated, this also implies that nodes deep in the tree use many more labeled
examples than are otherwise available. In finite sample regimes, which are not covered by these
boosting analyses, having more labeled samples implies a higher quality predictor as per standard
sample complexity analysis.
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Figure 3: Two different distributions over class labels in the plane with each color/pattern represent-
ing support for a single class label. The left distribution is easily solved with an OAA classifier while
the right distribution is easily solved with a decision tree.

A fundamental issue with a tree-structured prediction is that the number of labeled examples incident
on the root is much larger than the number of labeled examples incident on a leaf. This potentially
leads to: (1) underfitting toward the leaves; and (2) insufficient representation complexity toward the
root. Optimizing recall, rather than accuracy, ameliorates this drawback. Instead of halting at a leaf,
we can halt at an internal node n for which the top F' most frequent labels contain the true answer
with a sufficiently high probability. When F' = O(log K) this does not compromise the goal of
achieving logarithmic time classification.

Nevertheless, as data gets divided down the branches of the tree, empirical estimates for the “top F'
most frequent labels” suffer from a substantial missing mass problem [[11]. Thus, instead of comput-
ing empirical recall to determine when to halt descent, we use an empirical Bernstein (lower) bound
[L6], which is summarized by the following proposition.

Proposition 1. For all learning problems D and all nodes n in a fixed tree there exists a constant
A > 0 such that with probability 1 — :

A (1 =7 A
Tn Z 7qn - M - (1)
My My,
where ', is the empirical frequency amongst m,, events that the true label is in the top F' labels and
Ty, 1S the expected value in the population limit.

Reducing the depth of the tree by using a bound on r,, and joining labeled examples from many
leaves in a one-against-some approach both relieves data sparsity problems and allows greater error
tolerance by the root node.

3.2 Path Features

The relative representational power of different solutions is an important consideration. Are OAA
types of representations inherently more or less powerful than a tree based representation? Figure 3]
shows two learning problems illustrating two extremes under the assumption of a linear representa-
tion.

Linear OAA: If all the class parameter vectors happen to have the same magnitude then OAA
classification is equivalent to finding the nearest neighbor amongst a set of vectors (one per class)
which partition the space into a Voronoi diagram as in|3|on the left. The general case, with unequal
vectors corresponds to a weighted Voronoi diagram where the magnitude of two vectors sharing
a border determines the edge of the partition. No weighted Voronoi diagram can account for the
partition on the right.

Trees: If the partition of a space can be represented by a sequence of conditional splits, then a
tree can represent the solution accurately as in [3| on the right. On the other hand, extra work is
generally required to represent a Voronoi diagram as on the left. In general, the number of edges
in a multidimensional Voronoi diagram may grow at least quadratically in the number of points
implying ghat the number of nodes required for a tree to faithfully represent a Voronoi diagram is at
least ©(n?).



Based on this, neither tree-based nor OAA style prediction is inherently more powerful, with the
best solution being problem dependent.

Since we are interested in starting with a tree-based approach and ending with a OAS classifier there
is a simple representational trick which provides the best of both worlds. We can add features which
record the path through the tree. To be precise, let T' be a tree and path,.(z) be a vector with one
dimension per node in 7" which is set to 1 if x traverses the node and O otherwise. The following
proposition holds.

Proposition. For any learning problem D for which a tree T achieves error rate e,
OAA(z, pathy.(z)) with a linear representation can achieve error rate .

Linear representations are special, because they are tractably analyzed and because they are the
fundamental building blocks around which many more complex representations are built. Hence,
this representational change eases prediction in many common settings.

Proof. A linear OAA classifier is defined by a matrix w;, where i ranges over the input and y ranges
over the labels. Let w;,, = 0 by default and 1 when 4 corresponds to a leaf for which the tree predicts
y. Under this representation, the prediction of OAA(z, path,.(x)) is identical to T'(z), and hence
achieves the same error rate.

3.3 Optimization Objective

The Shannon Entropy of class labels is optimized in the router of figure [2b] Why?

Since the Recall Tree jointly optimizes over many base learning algorithms, the systemic properties
of the joint optimization are important to consider. A theory of decision tree learning as boosting [[13]]
provides a way to understand these joint properties in a population limit (or equivalently on a training
set iterated until convergence). In essence, the analysis shows that each level of the decision tree
boosts the accuracy of the resulting tree with this conclusion holding for several common objectives.

In boosting for multiclass classification [[7, [8, 24], it is important to achieve a weak dependence
on the number of class labels. Shannon Entropy is particularly well-suited to this goal, because it
has only a logarithmic dependence on the number of class labels. Let m;,, be the probability that

the correct label is ¢, conditioned on the corresponding example reaching node n. Then H, =
1

Zfil Tiln 108y o is the Shannon entropy of class labels reaching node n.

For this section, we consider a simplified algorithm which neglects concerns of finite sample anal-
ysis, how optimization is done, and the leaf predictors. What’s left is the value of optimizing the
router objective. We consider an algorithm which recursively splits the leaf with the largest fraction
f of all examples starting at the root and reaching the leaf. The leaf is split into two new leaves to
the left [ and right r. If f; and f,. are the fraction of examples going left and right, the split criterion
minimizes the expectation over the leaves of the average class entropy, f; H; + f..H,. This might be
achieved by update_router in Figure [2al or by any other means. With this criterion we are in a
position to directly optimize information boosting.

Definition 1. (y-Weak Learning Assumption) For all distributions n(z, y) a learning algorithm us-
ing examples (z,y)* IID from n finds a binary classifier ¢ : X — {l, r} satisfying

fiH + frH, < Hp —7v .

This approach is similar to previous [24] except that we boost in an additive rather than a multiplica-
tive sense. This is good because it suppresses an implicit dependence on K (since for any nontrivial
~ there exists a K such that with a uniform distribution U, Hy (1 — ) > 1), yeilding a strictly
stronger result.

As long as Weak Learning occurs, we can prove the following theorem.

Theorem 2. If v Weak Learning holds for every node in the tree and nodes with the largest fraction
of examples are split first, then after t > 2 splits the multiclass error rate € of the tree is bounded
by:

e < Hy —~v(1+Int)

where H is the entropy of the marginal distribution of class labels.



The proof in appendix [A]reuses techniques from [8| [13] but has a tighter result.

The most important observation from the theorem is that as ¢ (the number of splits) increases, the
error rate is increasingly bounded. This rate depends on In ¢ agreeing with the intuition that boosting
happens level by level in the tree. The dependence on the initial entropy H; shows that skewed
marginal class distributions are inherently easier to learn than uniform marginal class distributions,
as might be expected. These results are similar to previous results [[7, 8] [13 24]] with advantages. We
handle multiclass rather than binary classification [[L3]], we bound error rates instead of entropy [Z,8]],
and we use additive rather than multiplicative weak learning [24].

4 Empirical Results

We study several questions empirically.

1. What is the benefit of using one-against-some on a recall set?

2. What is the benefit of path features?

3. Is the online nature of the Recall Tree useful on nonstationary problems?

4. How does the Recall Tree compare to one-against-all statistically and computationally?
5. How does the Recall Tree compare to LOMTree statistically and computationally?

Throughout this section we conduct experiments using learning with a linear representation.

4.1 Datasets

Table 1: Datasets used for experimentation.

Dataset Task Classes | Examples
ALOI[10] | Visual Object Recognition 1k 10°
Imagenet[[19] | Visual Object Recognition | =~ 20k ~ 107
LTCBJ14] Language Modeling ~ 80k ~ 108
ODP[2] Document Classification | ~ 100k ~ 108

Table || overviews the data sets used for experimentation. These include the largest datasets where
published results are available for LOMTree (Aloi, Imagenet, ODP), plus an additional language
modeling data set (LTCB). Implementations of the learning algorithms, and scripts to reproduce
the data sets and experimental results, are available at (url redacted). Additional details about the
datasets can be found in Appendix

4.2 Comparison with other Algorithms

In our first set of experiments, we compare Recall Tree with a strong computational baseline
and a strong statistical baseline. The computational baseline is LOMTree, the only other online
logarithmic-time multiclass algorithm we know of. The statistical baseline is OAA, whose statisti-
cal performance we want to match (or even exceed), and whose linear computational dependence
on the number of classes we want to avoid. Details regarding the experimental methodology are in
Appendix [C] Results are summarized in Figure

Comparison with LOMTree The Recall Tree uses a factor of 32 less state than the LOMTree
which makes a dramatic difference in feasibility for large scale applications. Given this state reduc-
tion, the default expectation is worse prediction performance by the Recall Tree. Instead, we observe
superior or onpar statistical performance despite the state constraint. This typically comes with an
additional computational cost since the Recall Tree evaluates a number of per-class predictors.

Comparison with OAA On one dataset (Aloi) prediction performance is superior to OAA while
on the others it is somewhat worse.

Computationally OAA has favorable constant factors since it is highly amenable to vectorization.
Conversely, the conditional execution pattern of the Recall Tree frustrates vectorization even with
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Figure 4: Empirical comparison of statistical (left) and computational (right) performance of Re-
call Tree against two strong competitors: OAA (statistically good) and LOMTree (computationally
good). Recall Tree has poly(log) dependence upon number of classes (like LOMTree) but can sur-
pass OAA statistically.

L 100 T 40 S ——
2z in-order —+— with path features —+—
=9 95 permuted - 7 3 35 . Without path features - 7
35 90 . < 30+ .
ES Fkege S
o< 85 ke . = 25 8
T "

o2 80 - w20 =
Cn it
eP 75 %1 15 - 8

(2]
<o 70 Ll ol il o 10 L Ly

o

10000 100000 1e+06 1e+07 1e+08 1 10 100

Examples

(a) When the LTCB dataset is presented in the orig-
inal order, Recall Tree is able to exploit sequential

Candidate Set Size

(b) Test error on ALOI for various candidate set
sizes, with or without path features (all other param-

correlations for improved performance. After all ex-
amples are processed, the average progressive accu-
racy is 73.3% vs. 74.6%.

eters held fixed). Using multiple predictors per leaf
and including path features improves performance.

Figure 5

example mini-batching. Thus on ALOI although Recall Tree does on average 50 hyperplane eval-
uations per example while OAA does 1000, OAA is actually faster: larger numbers of classes are
required to experience the asymptotic benefits. For ODP with ~ 10° classes, with negative gradient
subsampling and using 24 cores in parallel, OAA is about the same wall clock time to train as Re-
call Tree on a single coreﬁ Negative gradient sampling does not improve inference times, which are
roughly 300 times slower for OAA than Recall Tree on ODP.

4.3 Online Operation

In this experiment we leverage the online nature of the algorithm to exploit nonstationarity in the
data to improve results. This is not something that is easily done with batch oriented algorithms, or
with algorithms that post-process a trained predictor to accelerate inference.

We consider two versions of LTCB. In both versions the task is to predict the next word given the
previous 6 tokens. The difference is that in one version, the Wikipedia dump is processed in the
original order (“in-order”’); whereas in the other version the training data is permuted prior to input
to the learning algorithm (“permuted”). We assess progressive validation loss [6] on the sequence.
The result in Figure [5a] confirms the Recall Tree is able to take advantage of the sequentially re-
vealed data; in particular, the far-right difference in accuracies is significant at a factor P < 0.0001
according to an N — 1 Chi-squared test.

2While not yet implemented, Recall Tree can presumably also leverage multicore for acceleration.



4.4 Path Features and Multiple Predictors

Two differences between Recall Tree and LOMTree are the use of multiple predictors at each tree
node and the augmentation of the example with path features. In this experiment we explore the
impact of these design choices using the ALOI dataset.

Figure [5b] shows the effect of these two aspects on statistical performance. As the candidate set
size is increased, test error decreases, but with diminishing returns. Disabling path features degrades
performance, and the effect is more pronounced as the candidate set size increases. This is expected,
as a larger candidate set size decreases the difficulty of obtaining good recall (i.e., a good tree) but
increases the difficulty of obtaining good precision (i.e., good class predictors), and path features
are only applicable to the latter. All differences here are significant at a P < 0.0001 according to
an NV — 1 Chi-squared test, except for when the candidate set size is 2, where there is no significant
difference.

4.5 The Empirical Bernstein Bound

Is the empirical Bernstein bound used helpful? To test this we trained on the LTCB dataset with a
multiplier on the bound of either 0 (i.e. just using empirical recall directly) or 1. The results are stark:
with a multiplier of 1, the test error was 78% while with a multiplier of 0 the test error was 91%.
Clearly, in the small samples per class regime this form of direct regularization is extraordinarily
helpful.

5 Conclusion

In this work we proposed the Recall Tree, a reduction of multiclass to binary classification, which
operates online and scales logarithmically with the number of classes. Unlike the LOMTree [8]],
we share classifiers among the nodes of the tree which alleviates data sparsity at deep levels while
greatly reducing the required state. We also use a tighter analysis which is more closely followed
in the implementation. These features allow us to reduce the statistical gap with OAA while still
operating many orders of magnitude faster for large K multiclass datasets. In the future we plan to
investigate multiway splits in the tree since O(log K')-way splits does not affect our O(poly log K)
running time and they might reduce contention in the root and nodes high in the tree.

Acknowledgements We would like to thank an anonymous reviewer for NIPS who spotted an error
in the theorem proof and made several good suggestions for improving it.

References

[1] Samy Bengio, Jason Weston, and David Grangier. Label embedding trees for large multi-class
tasks. In Advances in Neural Information Processing Systems, pages 163—171, 2010.

[2] Paul N Bennett and Nam Nguyen. Refined experts: improving classification in large tax-
onomies. In Proceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval, pages 11-18. ACM, 2009.

[3] Alina Beygelzimer, John Langford, and Pradeep Ravikumar. Error-correcting tournaments.
In Algorithmic Learning Theory, 20th International Conference, ALT 2009, Porto, Portugal,
October 3-5, 2009. Proceedings, pages 247-262, 2009.

[4] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain. Sparse local
embeddings for extreme multi-label classification. In Advances in Neural Information Pro-
cessing Systems, pages 730-738, 2015.

[5] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryptographic primi-
tives based on hard learning problems. In Advances in cryptologyCRYPTO93, pages 278-291.
Springer, 1993.

[6] Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out: Bounds for k-fold and
progressive cross-validation. In Proceedings of the Twelfth Annual Conference on Computa-

tional Learning Theory, COLT 1999, Santa Cruz, CA, USA, July 7-9, 1999, pages 203-208,
1999.



[7] Anna Choromanska, Krzysztof Choromanski, and Mariusz Bojarski. On the boosting ability of
top-down decision tree learning algorithm for multiclass classification. CoRR, abs/1605.05223,
2016.

[8] Anna E Choromanska and John Langford. Logarithmic time online multiclass prediction. In
Advances in Neural Information Processing Systems, pages 55-63, 2015.

[9] Alexandre de Brébisson and Pascal Vincent. An exploration of softmax alternatives belonging
to the spherical loss family. arXiv preprint arXiv:1511.05042, 2015.

[10] Jan-Mark Geusebroek, Gertjan J Burghouts, and Arnold WM Smeulders. The Amsterdam
library of object images. International Journal of Computer Vision, 61(1):103-112, 2005.

[11] I.J. Good. The population frequencies of species and the estimation of population parameters.
Biometrika, 40(16):237-264, 1953.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[13] Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree learn-
ing algorithms. In Proceedings of STOC, pages 459—468. ACM, 1996.

[14] Matt Mahoney. Large text compression benchmark.
http://www.mattmahoney.net/text/text.html, 2009.

[15] Yishay Mansour and David McAllester. Boosting using branching programs. Journal of Com-
puter and System Sciences, 64(1):103-112, 2002.

[16] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance
penalization. arXiv preprint arXiv:0907.3740, 2009.

[17] Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed language model. In
Advances in neural information processing systems, pages 1081-1088, 2009.

[18] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model.
In Proceedings of the international workshop on artificial intelligence and statistics, pages

246-252, 2005.

[19] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image repre-
sentations using convolutional neural networks. In CVPR, 2014.

[20] Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD, pages 263-272. ACM,
2014.

[21] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. The Journal of
Machine Learning Research, 5:101-141, 2004.

[22] Anshumali Shrivastava and Ping Li. Asymmetric Ish (alsh) for sublinear time maximum inner
product search (mips). In Advances in Neural Information Processing Systems, pages 2321—

2329, 2014.

[23] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[24] Eiji Takimoto and Akira Maruoka. Top-down decision tree learning as information based
boosting. Theor. Comput. Sci., 292(2):447-464, 2003.

[25] Pascal Vincent, Alexandre de Brébisson, and Xavier Bouthillier. Efficient exact gradient update
for training deep networks with very large sparse targets. In NIPS 28, pages 1108-1116, 2015.

[26] Jason Weston, Samy Bengio, and Nicolas Usunier. WSABIE: scaling up to large vocabulary
image annotation. In IJCAI 2011, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2764-2770, 2011.

[27] Jason Weston, Ameesh Makadia, and Hector Yee. Label partitioning for sublinear ranking.
In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages
181-189, 2013.

10



A Proof of theorem 2|

Proof. For the fixed tree at timestep ¢ (there have been ¢ — 1 previous splits) with a fixed partition
function in the nodes, the weighted entropy of class labels is W; = Y {neLeaves} fnHny.

When we split the ¢th node, the weak learning assumption implies entropy decreases by -y according

to:
fl fr >
H,>|-—H +—H,
><fn L )

where + is the advantage of the weak learner. Hence,

Wt - Wt+1 - ann - lel - frHr > fn’y .

We can bound f,, according to

1
max f, > n
which implies
Wi — Wi > %

. This can be solved recursively to get:

t

1

Wig1 <Wi —’YZ;
i—1

b1
§W1—7(1+/ -di>
i=11

=W —’)/(1 +lnt)
=H; —v(1 +1nt)

where the second inequality follows from bounding each term of the sum with successive integrals,
and H; is the marginal Shannon entropy of the class labels.

To finish the proof, we bound the multiclass loss in terms of the average entropy. For any leaf node
n we can assign the most likely label, y = arg max; m,; so the error rate is €, = 1 — my,,.

Wt+1 - Z fnZ”Tnz In 77_1‘

{necLeaves} i
1

> Z fn Z i 1 Tny

{nclLeaves} i

1
= > fal
1—e€,

{nclLeaves}
Z Z fnen -

{nclLeaves}

=€
Putting these inequalities together we have:

e < Hy —~v(1+Int)

B Datasets

ALOI [10] is a color image collection of one-thousand small objects recorded for scientific pur-
poses [10]. We use the same train-test split and representation as Choromanska et. al. [8].
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Table 2: Empirical comparison summary. When OAA training is accelerated using parallelism and
gradient subsampling, wall clock times are parenthesized. Training times are for defaults, i.e., with-
out hyperparameter optimization. Asterisked LOMTree results are from [8]].

D Method Test Error Training Time | Inference Time
ataset
Default | Tuned per example
OAA 122% | 12.1% 571s 67us
ALOI Recall Tree | 11.4% 8.6% 1972s 194ps
LOMTree | 21.4% | 16.5%* 112s 288
OAA 84.7% | 82.2% | 446d (20.4h) 118ms
Imagenet | Recall Tree | 91.1% | 88.4% 71.4h 4ms
LOMTree | 96.7% | 90.1%* 14.0h 0.56ms
OAA 787% | 76.8% | 764d (19.1h) 3600us
LTCB Recall Tree | 78.0% | 77.6% 4.8h 76us
LOMTree | 78.4% - 4.3h Slus
OAA 91.2% | 90.6% 133d (1.3h) 560ms
ODP Recall Tree | 96.2% | 93.8% 1.5h 1.9ms
LOMTree | 95.4% | 93.5%"* 0.6h 0.52ms

Imagenet consists of features extracted from intermediate layers of a convolutional neural net-
work trained on the ILVSRC2012 challenge dataset. This dataset was originally developed to study
transfer learning in visual tasks [[19]]; more details are at http://www.di.ens.fr/willow/
research/cnn/. We utilize a predictor linear in this representation.

LTCB is the Large Text Compression Benchmark, consisting of the first billion bytes of a particular
Wikipedia dump [14]. Originally developed to study text compression, it is now commonly used as
a language modeling benchmark where the task is to predict the next word in the sequence. We limit
the vocabulary to 80000 words plus a single out-of-vocabulary indicator; utilize a model linear in
the 6 previous unigrams, the previous bigram, and the previous trigram; and utilize a 90-10 train-test
split on entire Wikipedia articles.

ODP[2] is a multiclass dataset derived from the Open Directory Project. We utilize the same train-
test split and labels from [8]]. Specifically there is a fixed train-test split of 2:1, the representation of
a document is a bag of words, and the class label is the most specific category associated with each
document.

C Experimental Methodology

Default Performance Methodology Hy-

. . Algorithm Parameter Default Value
perparameter selection can be computation- L 1o Rat 1
ally burdensome for large data sets, which Binary carning Rate —
. . . Loss logistic
is relevant to any claims of decreased train- Nax Donth I il
ing times. Therefore we report results us- | Recall Tree N aé (elp(; 4?g2( ; EllSSCS)
ing the default values indicated in Table [3] D un;l Pan 1 ate/\s 085 1C asses)
For the larger data sets (Imagenet, ODP), we epth Penalty (A)

do a single pass over the training data; for  Typle 3: Algorithm hyperparameters for various algo-
the smaller data set (ALOI), we do multiple  rjthms. “Binary” refers to hyperparameters inherited

passes over the trgining data, rp(?nitoring 2 via reduction to binary classification.
10% held-out portion of the training data to determine when to stop optimizing.

Tuned Performance Methodology For tuned performance, we use random search over hyperpa-
rameters, taking the best result over 59 probes. For the smaller data set (ALOI), we optimize vali-
dation error on a 10% held-out subset of the training data. For the larger data sets (Imagenet, ODP),
we optimize progressive validation loss on the initial 10% of the training data. After determining
hyperparameters we retrain with the entire training set and report the resulting test error.

When available we report published LOMtree results, although they utilized a different method for
optimizing hyperparameters.
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Timing Measurements All timings are taken from the same 24 core xeon server machine. Further-
more, all algorithms are implemented in the Vowpal Wabbit toolkit and therefore share file formats,
parser, and binary classification base learner implying differences are attributable to the different
reductions. Our baseline OAA implementation is mature and highly tuned: it always exploits vector-
ization, and furthermore can optionally utilize multicore training and negative gradient subsampling
to accelerate training. For the larger datasets these latter features were necessary to complete the
experiments: estimated unaccelerated training times are given, along with wall clock times in paren-
thesis.
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