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Abstract We present SEARN, an algorithm for integrating SEARch and
IEARNing to solve complex structured prediction problems such as those that
occur in natural language, speech, computational biology, and vision. SEARN
is a meta-algorithm that transforms these complex problems into simple
classification problems to which any binary classifier may be applied. Unlike
current algorithms for structured learning that require decomposition of
both the loss function and the feature functions over the predicted structure,
SEARN is able to learn prediction functions for any loss function and any
class of features. Moreover, SEARN comes with a strong, natural theoretical
guarantee: good performance on the derived classification problems implies
good performance on the structured prediction problem.

1 Introduction

Prediction is the task of learning a function f that maps inputs x in an input
domain X to outputs y in an output domain ). Standard algorithms—
support vector machines, decision trees, neural networks, etc.—focus on
“simple” output domains such as Y = {—1,+1} (in the case of binary
classification) or Y = R (in the case of univariate regression).

We are interested in problems for which elements y € ) have complex
internal structure. The simplest and best studied such output domain is
that of labeled sequences. However, we are interested in even more complex
domains, such as the space of English sentences (for instance in a machine
translation application), the space of short documents (perhaps in an auto-
matic document summarization application), or the space of possible assign-
ments of elements in a database (in an information extraction/data mining
application). The structured complexity of features and loss functions in
these problems significantly exceeds that of sequence labeling problems.
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From a high level, there are four dimensions along which structured pre-
diction algorithms vary: structure (varieties of structure for which efficient
learning is possible), loss (different loss functions for which learning is possi-
ble), features (generality of feature functions for which learning is possible)
and data (ability of algorithm to cope with imperfect data sources such as
missing data, etc.). An in-depth discussion of alternative structured predic-
tion algorithms is given in Section 5. However, to give a flavor, the popular
conditional random field algorithm [29] is viewed along these dimensions as
follows. Structure: inference for a CRF is tractable for any graphical model
with bounded tree width; Loss: the CRF typically optimizes a log-loss ap-
proximation to 0/1 loss over the entire structure; Features: any feature of
the input is possible but only output features that obey the graphical model
structure are allowed; Data: EM can cope with hidden variables.

We prefer a structured prediction algorithm that is not limited to models
with bounded treewidth, is applicable to any loss function, can handle ar-
bitrary features and can cope with imperfect data. Somewhat surprisingly,
SEARN meets nearly all of these requirements by transforming structured
prediction problems into binary prediction problems to which a vanilla bi-
nary classifier can be applied. SEARN comes with a strong theoretical guar-
antee: good binary classification performance implies good structured pre-
diction performance. Simple applications of SEARN to standard structured
prediction problems yield tractable state-of-the-art performance. Moreover,
we can apply SEARN to more complex, non-standard structured prediction
problems and achieve excellent empirical performance.

This paper has the following outline:

Introduction.

Core Definitions.

The SEARN Algorithm.

Theoretical Analysis.

A Comparison to Alternative Techniques.
Experimental results.

Discussion.

oot W

2 Core Definitions

In order to proceed, it is useful to formally define a structured prediction
problem in terms of a state space.

Definition 1 A structured prediction problem D is a cost-sensitive clas-
sification problem where Y has structure: elements y € Y decompose into
variable-length vectors (y1,y2,...,yr).} D is a distribution over inputs x €
X and cost vectors ¢, where |c| is a variable in 2T .

! Treating y as a vector is simply a useful encoding; we are not interested only
in sequence labeling problems.
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As a simple example, consider a parsing problem under F; loss. In this
case, D is a distribution over (x, ¢) where x is an input sequence and for all
trees y with |z|-many leaves, ¢, is the F; loss of y on the “true” output.

The goal of structured prediction is to find a function h : X — ) that
minimizes the loss given in Eq (1).

L(D,h) =E(z.c)op {Cha) } (1)

The algorithm we present is based on the view that a vector y € ) can
be produced by predicting each component (yi,...,yr) in turn, allowing
for dependent predictions. This is important for coping with general loss
functions. For a data set (x1,¢1),..., (zn,cn) of structured prediction ex-
amples, we write T, for the length of the longest search path on example
n, and Thax = max, T),.

3 The Searn Algorithm

There are several vital ingredients in any application of SEARN: a seach
space for decomposing the prediction problem; a cost sensitive learning al-
gorithm; labeled structured prediction training data; a known loss function
for the structured prediction problem; and a good initial policy. These as-
pects are described in more detail below.

A search space S. The choice of search space plays a role similar to the
choice of structured decomposition in other algorithms. Final elements
of the search space can always be referenced by a sequence of choices ¢. In
simple applications of SEARN the search space is concrete. For example,
it might consist of the parts of speech of each individual word in a
sentence. In general, the search space can be abstract, and we show this
can be beneficial experimentally. An abstract search space comes with
an (unlearned) function f(¢) which turns any sequence of predictions
in the abstract search space into an output of the correct form. (For
a concrete search space, f is just the identity function. To minimize
confusion, we will leave off f in future notation unless its presence is
specifically important.)

A cost sensitive learning algorithm A. The learning algorithm returns a mul-
ticlass classifier h(s) given cost sensitive training data. Here s is a de-
scription of the location in the search space. A reduction of cost sen-
sitive classification to binary classification [4] reduces the requirement
to a binary learning algorithm. SEARN relies upon this learning algo-
rithm to form good generalizations. Nothing else in the SEARN algorithm
attempts to achieve generalization or estimation. The performance of
SEARN is strongly dependent upon how capable the learned classifier is.
We call the learned classifier a policy because it is used multiple times
on inputs which it effects, just as in reinforcement learning.
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Labeled structured prediction training data. SEARN digests the labeled train-
ing data for the structured prediciton problem into cost-sensitive train-
ing data which is fed into the cost-sensitive learning algorithm.?

A known loss function. A loss function L(y, f(¢)) must be known and be
computable for any sequence of predictions.

A good initial policy. This policy should achieve low loss when applied to
the training data. This can (but need not always) be defined using a
search algorithm.

3.1 SEARN at Test Time

SEARN at test time is a very simple algorithm. It uses the policy returned
by the learning algorithm to construct a sequence of decisions ¢ and makes
a final prediction f(g). First, one uses the learned policy to compute yo on
the basis of just the input x. One then computes y; on the basis of x and
4o, followed by predicting yo on the basis of x, yy and y;, etc. Finally, one
predicts yr on the basis of the input x and all previous decisions.

3.2 SEARN at Train Time

SEARN operates in an iterative fashion. At each iteration it uses a known
policy to create new cost-sensitive classification examples. These examples
are essentially the classification decisions that a policy would need to get
right in order to perform search well. These are used to learn a new classifier,
which is interpreted as a new policy. This new policy is interpolated with
the old policy and the process repeats.

3.2.1 Initial Policy SEARN relies on a good initial policy on the training
data. This policy can take full advantage of the training data labels. The
initial policy needs to be efficiently computable for SEARN to be efficient.
The implications of this assumption are discussed in detail in Section 3.4.1,
but it is strictly weaker than assumptions made by other structured predic-
tion techniques. The initial policy we use is a policy that, for a given state
predicts the best action to take with respect to the labels:

Definition 2 (Initial Policy) For an input x and a cost vector ¢ as in
Def 1, and a state s = x X (y1,...,y:) in the search space, the initial policy
m(s,€) is argming, ., ming, ., . Cryy.ypy- That s, ™ chooses the action
(i.e., value for y;+1) that minimizes the corresponding cost, assuming that
all future decisions are also made optimally.

This choice of initial policy is optimal when the correct output is a
deterministic function of the input features (effectively in a noise-free envi-
ronment).

2 A k-class cost-sensitive example is given by an input X and a vector of costs
c € (RT)*. Each class i has an associated cost ¢; and the goal is a function
h: X — 4 that minimizes the expected value of ¢;. See [4].
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3.2.2 Cost-sensitive Examples In the training phase, SEARN uses a given
policy h (initialized to the the initial policy ) to construct cost-sensitive
multiclass classification examples from which a new classifier is learned.
These classification examples are created by running the given policy h over
the training data. This generates one path per structured training example.
SEARN creates a single cost-sensitive example for each state on each path.
The classes associated with each example are the available actions (or next
states). The only difficulty lies in specifying the costs.

The cost associated with taking an action that leads to state s is the
regret associated with this action, given our current policy. For each state
s and each action a, we take action a and then execute the policy to gain
a full sequence of predictions ¢ for which we can compute a loss cg. Of
all the possible actions, one, a’, has the minimum expected loss. The cost
lr(c, s,a) for an action a in state s is the difference in loss between taking
action a and taking the action a’; see Eq (2).

lh(c,s,a) = Ey(s,a,n)Cy — Hclli/nE@N(s_’a/,h)C@ (2)

One complication arises because the policy used may be stochastic. This
can occur even when the base classifier learned is deterministic due to
stochastic interpolation within SEARN. There are (at least) three possible
ways to deal with randomness.

1. Monte-Carlo sampling: one draws many paths according to h beginning
at s’ and average over the costs.

2. Single Monte-Carlo sampling: draw a single path and use the correspond-
ing cost, with tied randomization as per Pegasus [42].

3. Approximation: it is often possible to efficiently compute the loss as-
sociated with following the initial policy from a given state; when h
is sufficiently good, this may serve as a useful and fast approximation.
(This is also the approach described by [30].)

The quality of the learned solution depends on the quality of the ap-
proximation of the loss. Obtaining Monte-Carlo samples is likely the best
solution, but in many cases the approximation is sufficient. An empirical
comparison of these options is performed in [12]. Here it is observed that
for easy problems (one for which low loss is possible), the approximation
performs approximately as well as the alternatives. Moreover, typically the
approximately outperforms the single sample approach, likely due to the
noise induced by following a single sample.

3.2.83 Algorithm The SEARN algorithm is shown in Figure 1. As input, the
algorithm takes a structured learning data set, an initial policy = and a
multiclass cost sensitive learner A. SEARN operates iteratively, maintaining
a current policy hypothesis h at each iteration. This hypothesis is initialized
to the initial policy (step 1).
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Algorithm SEARN(SST, 7, A)

1: Initialize policy h «— 7

2: while h has a significant dependence on 7 do

3:  Initialize the set of cost-sensitive examples S «

4:  for (z,y) € S°F do

5: Compute predictions under the current policy y ~ x, h

6: fort=1...T, do

T Compute features @ = &(s¢) for state s, = (z,y1, ..., yt)
8: Initialize a cost vector ¢ = ()

9: for each possible action a do
10: Let the cost £, for example z, ¢ at state s be £5(c, s, a)
11: end for
12: Add cost-sensitive example (&, £) to S
13: end for
14:  end for
15:  Learn a classifier on S: h' « A(S)
16:  Interpolate: h « Bh' + (1 — B)h
17: end while
18: return hj.s; without 7

Fig. 1 Complete SEARN Algorithm

The algorithm then loops for a number of iterations. In each iteration,
it creates a (multi-)set of cost-sensitive examples, S. These are created by
looping over each structured example (step 4). For each example (step 5),
the current policy h is used to produce a full output, represented as a se-
quence of predictions yi, ..., yr, . From this, states are derived and used to
create a single cost-sensitive example (steps 6-14) at each timestep.

The first task in creating a cost-sensitive example is to compute the
associated feature vector, performed in step 7. This feature vector is based
on the current state s; which includes the features x (the creation of the
feature vectors is discussed in more detail in Section 3.3). The cost vector
contains one entry for every possible action a that can be executed from
state s;. For each action a, we compute the expected loss associated with
the state s; @ a: the state arrived at assuming we take action a (step 10).

SEARN creates a large set of cost-sensitive examples S. These are fed into
any cost-sensitive classification algorithm, A, to produce a new classifier h’
(step 15). In step 16, SEARN combines the newly learned classifier A’ with
the current classifier A to produce a new classifier. This combination is
performed through linear interpolation with interpolation parameter 3 (see
Section 4 for details). SEARN returns the final policy with 7 removed (step
18) and the stochastic interpolation renormalized.

3.8 Feature Computations

In step 7 of the SEARN algorithm (Figure 1), one is required to compute
a feature vector @ on the basis of the give state s;. In theory, this step is
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arbitrary. However, the performance of the underlying classification algo-
rithm (and hence the induced structured prediction algorithm) hinges on
a good choice for these features. The feature vector @(s;) may depend on
any aspect of the input z and any past decision. In particular, there is no
limitation to a “Markov” dependence on previous decisions.

For concreteness, consider the part-of-speech tagging task: for each word
in a sentence, we must assign a single part of speech (eg., Det, Noun, Verb,
etc.). Given a state s; = (x,y1,...y:), one might compute a sparse feature
vector &(s;) with zeros everywhere except at positions corresponding to
“interesting” aspects of the input. For instance, a feature corresponding to
the identity of the t+1st word in the sentence would likely be very important
(since this is the word to be tagged). Furthermore, a feature corresponding
to the value y; would likely be important, since we believe that subsequent
tags are not independent of previous tags. These features would serve as
the input to the cost-sensitive learning algorithm, which would attempt to
predict the correct label for the ¢ + 1st word. This usually corresponds to
learning a single weight vector for each class (in a one-versus-all setting) or
to learning a single weight vector for each pair of classes (for all-pairs).

3.4 Policies

SEARN functions in terms of policies, a notion borrowed from the field of
reinforcement learning. This section discusses the nature of the initial policy
assumption and the connections to reinforcement learning.

3.4.1 Computability of the Initial Policy SEARN relies upon the ability to
start with a good initial policy =, defined formally in Definition 2. For
many simple problems under standard loss functions, it is straightforward
to compute a good policy 7 in constant time. For instance, consider the
sequence labeling problem (discussed further in Section 6.1). A standard
loss function used in this task is Hamming loss: of all possible positions,
how many does our model predict incorrectly. If one performs search left-
to-right, labeling one element at a time (i.e., each element of the y vector
corresponds exactly to one label), then 7 is trivial to compute. Given the
correct label sequence, m simply chooses at position i the correct label at
position 7. However, SEARN is not limited to simple Hamming loss. A more
complex loss function often considered for the sequence segmentation task
is F-score over (correctly labeled) segments. As discussed in Section 6.1.3,
it is just as easy to compute a good initial policy for this loss function.
This is not possible in many other frameworks, due to the non-additivity of
F-score. This is independent of the features.

This result—that SEARN can learn under strictly more complex struc-
tures and loss functions than other techniques—is not limited to sequence
labeling, as demonstrated below in Theorem 1. In order to prove this, we
need to formalize what we consider as “other techniques.” We use the max-
margin Markov network (M3N) formalism [51] for comparison, since this
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currently appears to be the most powerful generic framework. In particular,
learning in M3Ns is often tractable for problems that would be #P-hard for
conditional random fields. The M3N has several components, one of which
is the ability to compute a loss-augmented minimization [51]. This require-
ment states that Eq (3) is computable for any input z, output set Y, true
output y and weight vector w.

Pty w) = arg max w Bl §) (3. 9) (3
In Eq (3), &(-) produces a vector of features, w is a weight vector and

I(y,4) is the loss for prediction § when the correct output is y.

Theorem 1 Suppose Eq (3) is computable in time T(x); then the opti-
mal policy is computable in time O(T(x)). Further, there exist problems
for which the optimal policy is computable in constant time and for which
Eq (3) is an NP-hard computation.

Proof (sketch) For the first part, we use a vector encoding of y that main-
tains the decomposition over the regions used by the M?N. Given a prefix
Y1, - - -, Y, solve opt on the future choices (i.e., remove the part of the struc-
ture corresponding to the first ¢ outputs), which gives us an optimal policy.

For the second part, we simply make @ complex: for instance, include
long-range dependencies in sequence labeling. As the Markov order k in-
creases, the complexity of Viterbi decoding grows as ¥, where [ is the num-
ber of labels. In the limit as the Markov order approaches the length of the
longest sequence, Tiax, the computation for the minimal cost path (with
or without the added complexity of augmenting the cost with the loss) be-
comes NP-hard. Despite this intractability for Viterbi decoding, SEARN can
be applied to the identical problem with the exact same feature set, and in-
ference becomes tractable (precisely because SEARN never applies a Viterbi
algorithm). The complexity of one iteration of SEARN for this problem is
identical to the case when a Markov assumption is made: it is OTI%, where
T is the length of the sequence, and b is the beam size.

3.4.2 Search-based Policies The SEARN algorithm and the theory to be
presented in Section 4 do not require that the initial policy be optimal.
SEARN can train against any policy. One artifact of this observation is that
we can use search to create the initial policy.

At any step of SEARN, we need to be able to compute the best next
action. That is, given a node in the search space, and the cost vector ¢, we
need to compute the best step to take. This is exactly the standard search
problem: given a node in a search space, we find the shortest path to a
goal. By taking the first step along this shortest path, we obtain a good
initial policy (assuming this shortest path is, indeed, shortest). This means
that when SEARN asks for the best next step, one can execute any standard
search algorithm to compute this, for cases where a good initial policy is
not available analytically.
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Given this observation, the requirements of SEARN are reduced: instead
of requiring a good initial policy, we simply require that one can perform
efficient approximate search.

3.4.83 Beyond Greedy Search We have presented SEARN as an algorithm
that mimics the operations of a greedy search algorithm. Real-world expe-
rience has shown that often greedy search is insufficient and more complex
search algorithms are required. This observation is consistent with the stan-
dard view of search (trying to find a shortest path), but nebulous when con-
sidered in the context of SEARN. Nevertheless, it is often desirable to allow
a model to trade past decisions off future decisions, and this is precisely the
purpose of instituting more complex search algorithms.

It turns out that any (non-greedy) search algorithm operating in a search
space S can be equivalently viewed as a greedy search algorithm operating in
an abstract space §* (where the structure of the abstract space is dependent
on the original search algorithm). In a general search algorithm [47], one
maintains a queue of active states and expands a single state in each search
step. After expansion, each resulting child state is enqueued. The ordering
(and, perhaps, maximal size) of the queue is determined by the specific
search algorithm.

In order to simulate this more complex algorithm as greedy search, we
construct the abstract space S* as follows. Each node s € S* represents a
state of the queue. A transition exists between s and s’ in §* exactly when
a particular expansion of an S-node in the s-queue results in the queue
becoming s’. Finally, for each goal state g € S, we augment S* with a single
unique goal state g*. We insert transitions from s € §* to ¢* exactly when
g* € s. Thus, in order to complete the search process, a goal node must be
in the queue and the search algorithm must select this single node.

In general, SEARN makes no assumptions about how the search process is
structured. A different search process leads to a different bias in the learning
algorithm. It is up to the designer to construct a search process so that (a)
a good bias is exhibited and (b) computing a good initial policy is easy. For
instance, for some combinatorial problems such as matchings or tours, it
is known that left-to-right beam search tends to perform poorly. For these
problems, a local hill-climbing search is likely to be more effective since we
expect it to render the underlying classification problem simpler.

4 Theoretical Analysis

SEARN functions by slowly moving away from the initial policy (which is
available only for the training data) toward a fully learned policy. Each
iteration of SEARN degrades the current policy. The main theorem states
that the learned policy is not much worse than the starting (optimal) policy
plus a term related to the average cost sensitive loss of the learned classifiers
and another term related to the maximum cost sensitive loss. To simplify
notation, we write T" for Tiax.
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It is important in the analysis to refer explicitly to the error of the
classifiers learned during SEARN process. Let SEARN(D, h) denote the dis-
tribution over classification problems generated by running SEARN with
policy h on distribution D. Also let £{5(h') denote the loss of classifier b’
on the distribution SEARN(D, h). Let the average cost sensitive loss over I
iterations be:

I
1 CS
lavg = 7 D 155 (1) (4)
i=1
where h; is the ith policy and h/ is the classifier learned on the ith iteration.

Theorem 2 For all D with cpaw = E(z,c)np maxy ¢y (with (z,¢) as in
Def 1), for all learned cost sensitive classifiers h', SEARN with 3 = 1/T°
and 273 In T iterations, outputs a learned policy with loss bounded by:

L(D, higst) < L(D,m) + 2T g In T + (1 + InT') Cpyaz/ T

The dependence on T in the second term is due to the cost sensitive
loss being an average over T' timesteps while the total loss is a sum. The
InT factor is not essential and can be removed using other approaches [3]
[30]. The advantage of the theorem here is that it applies to an algorithm
that naturally copes with variable length T and yields a smaller amount of
computation in practice.

The choices of 3 and the number of iterations are pessimistic in practice.
Empirically, we use a development set to perform a line search minimization
to find per-iteration values for # and to decide when to stop iterating. The
analytical choice of § is made to ensure that the probability that the newly
created policy only makes one different choice from the previous policy for
any given example is sufficiently low. The choice of 3 assumes the worst:
the newly learned classifier always disagrees with the previous policy. In
practice, this rarely happens. After the first iteration, the learned policy
is typically quite good and only rarely differs from the initial policy. So
choosing such a small value for 3 is unneccesary: even with a higher value,
the current classifier often agrees with the previous policy.

The proof rests on the following lemmae.

Lemma 1 (Policy Degradation) Given a policy h with loss L(D, h), ap-
ply a single iteration of SEARN to learn a classifier h' with cost-sensitive
loss Egs(h’). Create a new policy h™" by interpolation with parameter 3 €
(0,1/T). Then, for all D, with cmaz = E(z c)vp max;c; (with (z,c) as in
Def 1):

L(D,h"") < L(D, h) + TRLE5 (W) + %62T2cmaz (5)
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Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether h°S
or h is called in the process of running h"®V. The easiest case is when h®S
is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by ¢ = 0,
c =1 and ¢ > 2, respectively.

L(D,h"") =Pr(c =0)L(D,h""™ | ¢=0)
+ Pr(c=1)L(D,h"Y | c=1)
+ Pr(c>2)L(D,h"" | ¢ > 2) (6)

<(1=ATLD,H) +TH01 - BT LD, + 50| (@)

+hi-—a-pT-10 - ﬂ)T—l]cmax

T T
—L(D, h) + TB(1 — B)T~55 (1) + (Z(—l)’ﬂl(i» L(D, h)

=2

+ 1= =" =180 = BT e ®)

<L(D,h) + TBISS(h') 9)
+[1- =87 =780 = 37| (cmax — LD, 1)

<L(D,h) + TBLS ()

+ 1= =BT =T8O A" ema (10)

T
=L(D, h) + TBLSS (W) + (Z(—l)lﬁ" C)) Conax (11)
<L(D,h) + TBLSS (W) + %T%%max (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that § < 1/T. Others are by algebra.
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This lemma states that applying a single iteration of SEARN does not cause
the structured prediction loss of the learned hypothesis to degrade too much.
In particular, up to a first order approximation, the loss increases propor-
tional to the loss of the learned classifier. This observation can be iterated
to yield the following lemma:

Lemma 2 (Iteration) For all D, for all learned h', after C/3 iterations
of SEARN beginning with a policy m with loss L(D, ), and average learned
losses as Eq (4), the loss of the final learned policy h (without the optimal
policy component) is bounded by Eq (13).

L(D, higst) < L(D, m) + CT gpg + Crmas (;CTzﬁ + Texp[—C]> (13)

This lemma states that after C'/3 iterations of SEARN the learned policy
is not much worse than the quality of the initial policy w. The theorem
follows from a choice of the constants 3 and C' in Lemma 2.

Proof The proof involves invoking Lemma 1 repeatedly. After C/( itera-
tions, we can verify that:

1
L(D,h) < L(D, 1) + CT g + Crmax <§CT2 5)

Last, if we call the initial policy, we fail with loss at most ¢ax. The prob-
ability of failure after C'/f iterations is at most T(1 — 3)¢/# < T exp[—C].

5 Comparison to Alternative Techniques

Standard techniques for structured prediction focus on the case where the
argmax in Eq (14) is tractable. Given its tractability, they attempt to
learn parameters 6 such that solving Eq (14) often results in low loss. There
are a handful of classes of such algorithms and a large number of variants
of each. Here, we focus on independent classifier models, perceptron-based
models, and global models (such as conditional random fields and max-
margin Markov networks). There are, of course, alternative frameworks (see,
eg., [58,36,1,39,54]), but these are common examples.

5.1 The arg max Problem

Many structured prediction problems construct a scoring function F(y | z, 6).
For a given input z € X and set of parameters § € @, F provides a score for
each possible output y. This leads to the “argmax” problem (also known
as the decoding problem or the pre-image problem), which seeks to find the
y that maximizes F in order to make a prediction.
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J = a ax F 0 14
y = arg max (y|z,0) (14)

In Eq (14), we seek the output y from the set ), (where )}, C Y is
the set of all “reasonable” outputs for the input x — typically assumed to
be finite). Unfortunately, solving Eq (14) exactly is tractable only for very
particular structures ) and scoring functions F. As an easy example, when
Y, is interpreted as a label sequence and the score function F' depends only
on adjacent labels, then dynamic programming can be used, leading to an
O(nk?) prediction algorithm, where n is the length of the sequence and k is
the number of possible labels for each element in the sequence. Similarly, if
Y represents trees and F' obeys a context-free assumption, then this problem
can be solved in time O(n?k).

Often we are interested in more complex structures, more complex fea-
tures or both. For such tasks, an exact solution to Eq (14) is not tractable.
For example, In natural language processing most statistical word-based and
phrase-based models of translation are known to be NP-hard [19]; syntactic
translations models based on synchronous context free grammars are some-
times polynomial, but with an exponent that is too large in practice, such as
n'! [21]. Even in comparatively simple problems like sequence labeling and
parsing—which are only O(n) or O(n3)—it is often still computationally
prohibitive to perform exhaustive search [5]. For another sort of example,
in computational biology, most models for phylogeny [17] and protein sec-
ondary structure prediction [10] result in NP-hard search problems.

When faced with such intractable search problem, the standard tactic
is to use an approximate search algorithm, such as greedy search, beam
search, local hill-climbing search, simulated annealing, etc. These search
algorithms are unlikely to be provably optimal (since this would imply that
one is efficiently solving an NP-hard problem), but the hope is that they
perform well on problems that are observed in the real world, as opposed
to “worst case” inputs.

Unfortunately, applying suboptimal search algorithms to solve the struc-
tured prediction problem from Eq (14) dispenses with many nice theoretical
properties enjoyed by sophisticated learning algorithms. For instance, it may
be possible to learn Bayes-optimal parameters 6 such that if exact search
were possible, one would always find the best output. But given that exact
search is not possible, such properties go away. Moreover, given that dif-
ferent search algorithms exhibit different properties and biases, it is easy
to believe that the value of 6 that is optimal for one search algorithm is
not the same as the value that is optimal for another search algorithm.?® It
is these observations that have motivated our exploration of search-based
structured prediction algorithms: learning algorithms for structured predic-
tion that explicitly model the search process.

3 In fact, [57] has provided evidence that when using approximation algorithms
for graphical models, it is important to use the same approximate at both training
and testing time.
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5.2 Independent Classifiers

There are essentially two varieties of local classification techniques applied
to structured prediction problems. In the first variety, the structure in the
problem is ignored, and a single classifier is trained to predict each ele-
ment in the output vector independently [43] or with dependence created
by enforcement of membership in Yy constraints [45]. The second variety is
typified by maximum entropy Markov models [37], though the basic idea of
MEMNMSs has also been applied more generally to SVMs [27,28,20]. In this
variety, the elements in the prediction vector are made sequentially, with
the nth element conditional on outputs n—k...n—1 for a kth order model.

In the purely independent classifier setting, both training and testing
proceed in the obvious way. Since the classifiers make one decision com-
pletely independently of any other decision, training makes use only of the
input. This makes training the classifiers incredibly straightforward, and
also makes prediction easy. In fact, running SEARN with @(x,y) indepen-
dent of all but y,, for the n prediction would yield exactly this framework
(note that there would be no reason to iterate SEARN in this case). While
this renders the independent classifiers approach attractive, it is also signif-
icantly weaker, in the sense that one cannot define complex features over
the output space. This has not thus far hindered its applicability to prob-
lems like sequence labeling [43], parsing and semantic role labeling [44], but
does seem to be an overly strict condition. This also limits the approach to
Hamming loss.

SEARN is more similar to the MEMM-esque prediction setting. The key
difference is that in the MEMM, the nth prediction is being made on the ba-
sis of the k previous predictions. However, these predictions are noisy, which
potentially leads to the suboptimal performance described in the previous
section. The essential problem is that the models have been trained assum-
ing that they make all previous predictions correctly, but when applied in
practice, they only have predictions about previous labels. It turns out that
this can cause them to perform nearly arbitrarily badly. This is formalized
in the following theorem, due to Matti Kaaridinen.

Theorem 3 ([22]) There exists a distribution D over first order binary
Markov problems such that training a binary classifier based on true previous
predictions to an error rate of € > 0 leads to a Hamming loss given in
Eq (15), where T is the length of the sequence.
T+1

z_1-(1—2e) +1%Z (15)

2 4e 2 2
Where the approzimation is true for small € or large T.

Recently, [7] has described an algorithm termed stacked sequential learn-
ing that attempts to remove this bias from MEMMSs in a similar fashion
to SEARN. The stacked algorithm learns a sequence of MEMMs, with the
model trained on the t 4+ 1st iteration based on outputs of the model from
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the tth iteration. For sequence labeling problems, this is quite similar to
the behaviour of SEARN when [ is set to 1. However, unlike SEARN, the
stacked sequential learning framework is effectively limited to sequence la-
beling problems. This limitation arises from the fact that it implicitly as-
sumes that the set of decisions one must make in the future are always going
to be same, regardless of decisions in the past. In many applications, such as
entity detection and tracking [15], this is not true. The set of possible choices
(actions) available at time step ¢ is heavily dependent on past choices. This
makes the stacked sequential learning inapplicable in these problems.

5.3 Perceptron-Style Algorithms

The structured perceptron is an extension of the standard perceptron [46] to
structured prediction [8]. Assuming that the arg max problem is tractable,
the structured perceptron constructs the weight vector in nearly an identical
manner as for the binary case. While looping through the training data,
whenever the predicted ¢, for x, differs from y,, we update the weights
according to Eq (16).

w — w~+ D(xp, Yn) — P(Tn, In) (16)

This weight update serves to bring the vector closer to the true out-
put and further from the incorrect output. As in the standard perceptron,
this often leads to a learned model that generalizes poorly. As before, one
solution to this problem is weight averaging [18].

The incremental perceptron [9] is a variant on the structured perceptron
that deals with the issue that the arg max may not be analytically available.
The idea of the incremental perceptron is to replace the arg max with a beam
search algorithm. The key observation is that it is often possible to detect in
the process of executing search whether it is possible for the resulting output
to ever be correct. The incremental perceptron is essentially a search-based
structured prediction technique, although it was initially motivated only
as a method for speeding up convergence of the structured perceptron. In
comparison to SEARN, it is, however, much more limited. It cannot cope
with arbitrary loss functions, and is limited to a beam-search application.
Moreover, for search problems with a large number of internal decisions
(such as entity detection and tracking [15]), aborting search at the first
error is far from optimal.

5.4 Global Prediction Algorithms

Global prediction algorithms attempt to learn parameters that, essentially,
rank correct (low loss) outputs higher than incorrect (high loss) alternatives.

Conditional random fields are an extension of logistic regression (maxi-
mum entropy models) to structured outputs [29]. Similar to the structured
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perceptron, a conditional random field does not employ a loss function, but
rather optimizes a log-loss approximation to the 0/1 loss over the entire out-
put. Only when the features and structure are chosen properly can dynamic
programming techniques be used to compute the required partition func-
tion, which typically limits the application of CRF's to linear chain models
under a Markov assumption.

The maximum margin Markov network (M?N) formalism considers the
structured prediction problem as a quadratic programming problem [52,51],
following the formalism for the support vector machine for binary classifica-
tion. The M3N formalism extends this to structured outputs under a given
loss function [ by requiring that the difference in score between the true
output y and any incorrect output ¢ is at least the loss I(x,y, ) (modulo
slack variables). That is: the M®N framework scales the margin to be pro-
portional to the loss. Under restrictions on the output space and the features
(essentially, linear chain models with Markov features) it is possible to solve
the corresponding quadratic program in polynomial time.

In comparison to CRFs and M3Ns, SEARN is strictly more general.
SEARN is limited neither to linear chains nor to Markov style features and
can effectively and efficiently optimize structured prediction models under
far weaker assumptions (see Section 6.2 for empirical evidence supporting
this claim).

6 Experimental Results

In this section, we present experimental results on two different sorts of
structured prediction problems. The first set of problems—the sequence la-
beling problems—are comparatively simple and are included to demonstrate
the application of SEARN to easy tasks. They are also the most common ap-
plication domain on which other structured prediction techniques are tested;
this enables us to directly compare SEARN with alternative algorithms on
standardized data sets. The second application we describe is based on an
automatic document summarization task, which is a significantly more com-
plex domain than sequence labeling. This task enables us to test SEARN on
significantly more complex problems with loss functions that do not decom-
pose over the structure.

6.1 Sequence Labeling

Sequence labeling is the task of assigning a label to each element in an input
sequence. Sequence labeling is an attractive test bed for structured predic-
tion algorithms because it is the simplest non-trivial structure. Modern
state-of-the-art structured prediction techniques fare very well on sequence
labeling problems. In this section, we present a range of results investigat-
ing the performance of SEARN on four separate sequence labeling tasks:
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Fig. 2 Eight example words from the handwriting recognition data set.

handwriting recognition, named entity recognition (in Spanish), syntactic
chunking and joint chunking and part-of-speech tagging.

For pure sequence labeling tasks (i.e., when segmentation is not also
done), the standard loss function is Hamming loss, which gives credit on a
per label basis. For a true output y of length N and hypothesized output gy
(also of length N), Hamming loss is defined according to Eq (17).

ey 5) 2 5™ 1y £ ] an)

The most common loss function for joint segmentation and labeling prob-
lems (like the named entity recognition and syntactic chunking problems) is
F; measure over chunks®. F; is the geometric mean of precision and recall
over the (properly-labeled) chunk identification task, given in Eq (18).

¢ (y.g) 2 2000 (18)
lyl + 9]

As can be seen in Eq (18), one is penalized both for identifying too many
chunks (penalty in the denominator) and for identifying too few (penalty
in the numerator). The advantage of F; measure over Hamming loss seen
most easily in problems where the majority of words are “not chunks”—
for instance, in gene name identification [40]—Hamming loss often prefers
a system that identifies mo chunks to one that identifies some correctly
and other incorrectly. Using a weighted Hamming loss can not completely
alleviate this problem, for essentially the same reasons that a weighted zero-
one loss cannot optimize F; measure in binary classification, though one can
often achieve an approximation [31,41].

4 We note in passing that directly optimizing F; may not be the best approach,
from the perspective of integrating information in a pipeline [35]. However, since
F1 is commonly used and does not decompose over the output sequence, we use
it for the purposes of demonstration.
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El presidente de la [Junta de Extremadura]org , [Juan Carlos Rodriguez Ibarralper
, recibird en la sede de la [Presidencia del Gobierno|org extremefio a familiares
de varios de los condenados por el proceso ¢ [Lasa-Zabala]misc 7 , entre ellos
a [Lourdes Diez Urracalper , esposa del ex gobernador civil de [Guiptzcoalioc
[Julen Elgorriagalper ; y & [Antonio Rodriguez Galindo]pgr , hermano del general
[Enrique Rodriguez Galindo]per -

Fig. 3 Example labeled sentence from the Spanish Named Entity Recognition
task.

6.1.1 Handwriting Recognition The handwriting recognition task we con-
sider was introduced by [25]. Later, [52] presented state-of-the-art results on
this task using max-margin Markov networks. The task is an image recogni-
tion task: the input is a sequence of pre-segmented hand-drawn letters and
the output is the character sequence (“a”-“z”) in these images. The data
set we consider is identical to that considered by [52] and includes 6600
sequences (words) collected from 150 subjects. The average word contains 8
characters. The images are 8 x 16 pixels in size, and rasterized into a binary
representation. Example image sequences are shown in Figure 2 (the first
characters are removed because they are capitalized).

For each possible output letter, there is a unique feature that counts
how many times that letter appears in the output. Furthermore, for each
pair of letters, there is an “edge” feature counting how many times this pair
appears adjacent in the output. These edge features are the only “structural
features” used for this task (i.e., features that span multiple output labels).
Finally, for every output letter and for every pixel position, there is a feature
that counts how many times that pixel position is “on” for the given output
letter.

In the experiments, we consider two variants of the data set. The first,
“small,” is the problem considered by [52]. In the small problem, ten fold
cross-validation is performed over the data set; in each fold, roughly 600
words are used as training data and the remaining 6000 are used as test data.
In addition to this setting, we also consider the “large” reverse experiment:
in each fold, 6000 words are used as training data and 600 are used as test
data.

6.1.2 Spanish Named Entity Recognition The named entity recognition
(NER) task is concerned with spotting names of persons, places and or-
ganizations in text. Moreover, in NER we only aim to spot names and
neither pronouns (“he”) nor nominal references (“the President”). We use
the CoNLL 2002 data set, which consists of 8324 training sentences and
1517 test sentences; examples are shown in Figure 3. A 300-sentence sub-
set of the training data set was previously used by [54] for evaluating the
SVMstruct framework in the context of sequence labeling. The small train-
ing set was likely used for computational considerations. The best reported
results to date using the full data set are due to [2]. We report results on
both the “small” and “large” data sets.
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[Great American|np [said]vp [it]np [increased]vp [its loan-loss reserves|np [bylpp [$
93 million]np [after]pp [reviewing]vpe [its loan portfoliojnp , [raising]vp [its total loan
and real estate reserves|np [to]pp [$ 217 million]yp .

Fig. 4 Example labeled sentence from the syntactic chunking task.

The structural features used for this task are roughly the same as in the
handwriting recognition case. For each label, each label pair and each label
triple, a feature counts the number of times this element is observed in the
output. Furthermore, the standard set of input features includes the words
and simple functions of the words (case markings, prefix and suffix up to
three characters) within a window of £2 around the current position. These
input features are paired with the current label. This feature set is fairly
standard in the literature, though [2] report significantly improved results
using a much larger set of features. In the results shown later in this section,
all comparison algorithms use identical feature sets.

6.1.3 Syntactic Chunking The final sequence labeling task we consider is
syntactic chunking (for English), based on the CoNLL 2000 data set. This
data set includes 8936 sentences of training data and 2012 sentences of test
data. An example is shown in Figure 4. (Several authors have considered
the noun-phrase chunking task instead of the full syntactic chunking task.
It is important to notice the difference, though results on these two tasks
are typically very similar, indicating that the majority of the difficulty is
with noun phrases.)

We use the same set of features across all models, separated into “base
features” and “meta features.” The base features apply to words individu-
ally, while meta features apply to entire chunks. The standard base features
used are: the chunk length, the word (original, lower cased, stemmed, and
original-stem), the case pattern of the word, the first and last 1, 2 and 3
characters, and the part of speech and its first character. We additionally
consider membership features for lists of names, locations, abbreviations,
stop words, etc. The meta features we use are, for any base feature b, b
at position ¢ (for any sub-position of the chunk), b before/after the chunk,
the entire b-sequence in the chunk, and any 2- or 3-gram tuple of bs in the
chunk. We use a first order Markov assumption (chunk label only depends
on the most recent previous label) and all features are placed on labels,
not on transitions. In the results shown later in this section, some of the
algorithms use a slightly different feature set. In particular, the CRF-based
model uses similar, but not identical features; see [50] for details.

6.1.4 Joint Chunking and Tagging In the preceding sections, we considered
the single sequence labeling task: to each element in a sequence, a single
label is assigned. In this section, we consider the joint sequence labeling
task. In this task, each element in a sequence is labeled with multiple tags.
A canonical example of this task is joint POS tagging and syntactic chunking
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GreatpNp  AmericanM\p  saidgi® itER  increasediom itsgﬁ\'fg loan-lossMNe
reservesﬁNNS bymep $§,NP 938\3“; millionf_ﬁp afteri'ep reviewing\B/?VGP itsgﬁ\,Pg loanM\e
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Fig. 5 Example sentence for the joint POS tagging and syntactic chunking task.

[49]. An example sentence jointly labeled for these two outputs is shown in
Figure 5 (under the BIO encoding).

For SEARN, there is little difference between standard sequence labeling
and joint sequence labeling. We use the same data set as for the standard
syntactic chunking task (Section 6.1.3) and essentially the same features.
In order to model the fact that the two streams of labels are not indepen-
dent, we decompose the problem into two parallel tagging tasks. First, the
first POS label is determined, then the first chunk label, then the second
POS label, then the second chunk label, etc. The only difference between
the features we use in this task and the vanilla chunking task has to do
the structural features. The structural features we use include the obvious
Markov features on the individual sequences: counts of singleton, doubleton
and tripleton POS and chunk tags. We also use “crossing sequence” fea-
tures. In particular, we use counts of pairs of POS and chunk tags at the
same time period as well as pairs of POS tags at time ¢ and chunk tags at
t — 1 and vice versa.

6.1.5 Search and Initial Policies The choice of “search” algorithm in SEARN
essentially boils down to the choice of output vector representation, since,
as defined, SEARN always operates in a left-to-right manner over the output
vector. In this section, we describe vector representations for the output
space and corresponding optimal policies for SEARN.

The most natural vector encoding of the sequence labeling problem is
simply as itself. In this case, the search proceeds in a greedy left-to-right
manner with one word being labeled per step. This search order admits
some linguistic plausibility for many natural language problems. It is also
attractive because (assuming unit-time classification) it scales as O(NL),
where N is the length of the input and L is the number of labels, inde-
pendent of the number of features or the loss function. However, this vector
encoding is also highly biased, in the sense that it is perhaps not optimal for
some (perhaps unnatural) problems. Other orders are possible (such as al-
lowing any arbitrary position to be labeled at any time, effectively mimicing
belief propagation); see [12] for more experimental results under alternative
orderings.

For joint segmentation and labeling tasks, such as named entity identi-
fication and syntactic chunking, there are two natural encodings: word-at-
a-time and chunk-at-a-time. In word-at-a-time, one essentially follows the
“BIO encoding” and tags a single word in each search step. In chunk-at-
a-time, one tags single chunks in each search step, which can consist of
multiple words (after fixing a maximum phrase length). In our experiments,
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we focus exclusively on chunk-at-a-time decoding, as it is more expressive
(feature-wise) and has been seen to perform better in other scenarios [48]).

Under the chunk-at-a-time encoding, an input of length N leads to a
vector of length NV over M x L+ 1 labels, where M is the maximum phrase
length. The interpretation of the first M x L labels, for instance (m, ) means
that the next phrase is of length m and is a phrase of type [. The “+1” label
corresponds to a “complete” indicator. Any vector for which the sum of the
“m” components is not exactly IV attains maximum loss.

6.1.6 Initial Policies For the sequence labeling problem under Hamming
loss, the optimal policy is always to label the next word correctly. In the
left-to-right order, this is straightforward. For the segmentation problem,
word-at-a-time and chunk-at-a-time behave very similarly with respect to
the loss function and optimal policy. We discuss word-at-a-time because its
notationally more convenient, but the difference is negligible. The optimal
policy can be computed by analyzing a few options in Eq (19)

begin X Yy = begin X
m(z, Y117, J1:0—1) = § in X y¢ = in X and ¢;_; € {begin X,in X}
out otherwise

(19)

Tt is easy to show that this policy is optimal (assuming noise-free training
data). There is, however, another equally optimal policy. For instance, if y;
is “in X7 but g;—1 is “in Y” (for X #Y), then it is equally optimal to select
7¢ to be “out” or “in Y”. In theory, when the optimal policy does not care
about a particular decision, one can randomize over the selection. However,
in practice, we always default to a particular choice to reduce noise in the
learning process.

For all of the policies described above, it is also straightforward to com-
pute the optimal approximation for estimating the expected cost of an ac-
tion. In the Hamming loss case, the loss is 0 if the choice is correct and 1
otherwise. The computation for F; loss is a bit more complicated: one needs
to compute an optimal intersection size for the future and add it to the past
“actual” size. This is also straightforward by analyzing the same cases as in
Eq (19).

6.1.7 Experimental Results and Discussion In this section, we compare
the performance of SEARN to the performance of alternative structured
prediction techniques over the data sets described above. The results of this
evaluation are shown in Table 1. In this table, we compare raw classification
algorithms (perceptron, logistic regression and SVMs) to alternative struc-
tured prediction algorithms (structured perceptron, CRFs, SVM5tu¢ts and
M?3Ns) to SEARN with three baseline classifiers (perceptron, logistic regres-
sion and SVMs). For all SVM algorithms and for M®Ns, we compare both
linear and quadratic kernels (cubic kernels were evaluated but did not lead
to improved performance over quadratic kernels).
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ALGORITHM Handwriting NER Chunk | C4+T
Small Large | Small Large
CLASSIFICATION
Perceptron 65.56  70.05 | 91.11 94.37 83.12 87.88
Log Reg 68.65 72.10 | 93.62 96.09 85.40 90.39
SVM-Lin 75.75  82.42 | 93.74 97.31 86.09 93.94
SVM-Quad 82.63  82.52 | 85.49 85.49 ~ ~
STRUCTURED
Str. Perc. 69.74 74.12 | 93.18 95.32 92.44 93.12
CRF — — 94.94 ~ 94.77 96.48
SV Mstruct — — 94.90 ~ - —
M?®N-Lin 81.00 ~ - - - -
M3N-Quad 87.00 ~ — — — —
SEARN
Perceptron 70.17  76.88 | 95.01 97.67 94.36 96.81
Log Reg 73.81  79.28 | 95.90 98.17 94.47 96.95
SVM-Lin 82.12 90.58 | 95.91 98.11 94.44 96.98
SVM-Quad 87.55 90.91 | 89.31 90.01 ~ ~

Table 1 Empirical comparison of performance of alternative structured predic-
tion algorithms against SEARN on sequence labeling tasks. (Top) Comparison for
whole-sequence 0/1 loss; (Bottom) Comparison for individual losses: Hamming
for handwriting and Chunking+Tagging and F for NER and Chunking. SEARN is
always optimized for the appropriate loss.

For all SEARN-based models, we use the the following settings of the
tunable parameters (see [12] for a comparison of different settings). We use
the optimal approximation for the computation of the per-action costs. We
use a left-to-right search order with a beam of size 10. For the chunking
tasks, we use chunk-at-a-time search. We use weighted all pairs and costing
to reduce from cost-sensitive classification to binary classification.

Note that some entries in Table 1 are missing. The vast majority of these
entries are missing because the algorithm considered could not reasonably
scale to the data set under consideration. These are indicated with a “~”
symbol. Other entries are not available simply because the results we report
are copied from other publications and these publications did not report all
relevant scores. These are indicated with a “—” symbol.

We observe several patterns in the results from Table 1. The first is that
structured techniques consistently outperform their classification counter-
parts (eg., CRF's outperform logistic regression). The single exception is on
the small handwriting task: the quadratic SVM outperforms the quadratic
M?3N.? For all classifiers, adding SEARN consistently improves performance.

An obvious pattern worth noticing is that moving from the small data
set to the large data set results in improved performance, regardless of

® However, it should be noted that a different implementation technique was
used in this comparison. The M3N is based on an SMO algorithm, while the
quadratic SVM is libsvm [6].
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learning algorithm. However, equally interesting is that simple classifica-
tion techniques when applied to large data sets outperform complicated
learning techniques applied to small data sets. Although this comparison is
not completely fair—both algorithms should get access to the same data—
if the algorithm (like the SVMs®™* or the M®N) cannot scale to the large
data set, then something is missing. For instance, a vanilla SVM on the
large handwriting data set outperforms the M>N on the small set. Simi-
larly, a vanilla logistic regression classifier trained on the large NER data
set outperforms the SVMs'™t and the CRF on the small data sets.

On the same data set, SEARN can perform comparably or better than
competing structured prediction techniques. On the small handwriting task,
the two best performing systems are M3Ns with quadratic kernels (87.0%
accuracy) and SEARN with quadratic SVMs (87.6% accuracy). On the NER
task, SEARN with a perceptron classifier performs comparably to SVMstruct
and CRF's (at around 95.9% accuracy). On the Chunking+Tagging task, all
varieties of SEARN perform comparatively to the CRF. In fact, the only task
on which SEARN does not outperform the competing techniques is on the
raw chunking task, for which the CRF obtains an F-score of 94.77 compared
to 94.47 for SEARN, using a significantly different feature set.

The final result from Table 1 worth noticing is that, with the excep-
tion of the handwriting recognition task, SEARN using logistic regression
as a base learner performs at the top of the pack. The SVM-based SEARN
models typically perform slightly better, but not significantly. In fact, the
raw averaged perceptron with SEARN performs almost as well as the logis-
tic regression. This is a nice result because the SVM-based models tend to
be expensive to train, especially in comparison to the perceptron. The fact
that this pattern does not hold for the handwriting task is likely due to
the fact that the data for this task is quite unlike the data for the other
tasks. For the handwriting task, there are a comparatively small number of
features which are individually much less predictive of the class. It is only
in combination that good classifiers can be learned.

While these results are useful, they should be taken with a grain of salt.
Sequence labeling is a very easy problem. The structure is simple and the
most common loss functions decompose over the structure. The compara-
tively good performance of raw classifiers suggests that the importance of
structure is minor. In fact, some results suggest that one need not actually
consider the structure at all for some such problems [43,45].

6.2 Automatic Document Summarization

Multidocument summarization is the task of creating a summary out of a
collection of documents on a focused topic. In query-focused summariza-
tion, this topic is given explicitly in the form of a user’s query. The dom-
inant approach to the multidocument summarization problem is sentence
extraction: a summary is created by greedily extracting sentences from the
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“theman ate .” “the man ate a sandwich . ”

Fig. 6 An example of the creation of a summary under the vine-growth model.

document collection until a pre-defined word limit is reached. [53] and [33]
describe representative examples. Recent work in sentence compression [26,
38] and document compression [13] attempts to take small steps beyond
sentence extraction. Compression models can be seen as techniques for ex-
tracting sentences then dropping extraneous information. They are more
powerful than simple sentence extraction systems, while remaining train-
able and tractable. Unfortunately, their training hinges on the existence of
( sentence, compression ) pairs, where the compression is obtained from
the sentence by only dropping words and phrases (the work of [56] is an
exception). Obtaining such data is quite challenging.

The exact model we use for the document summarization task is a novel
“vine-growth” model, described in more detail in [12]. The vine-growth
method uses syntactic parses of the sentence in the form of dependency
structures. In the vine-growth model, if a word w is to be included in the
summary, then all words closer to the tree root are included.

6.2.1 Search Space and Actions The search algorithm we employ for im-
plementing the vine-growth model is based on incrementally growing sum-
maries. In essence, beginning with an empty summary, the algorithm incre-
mentally adds words to the summary, either by beginning a new sentence
or growing existing sentences. At any step in search, the root of a new sen-
tence may be added, as may any direct child of a previously added node. To
see more clearly how the vine-growth model functions, consider Figure 6.
This figure shows a four step process for creating the summary “the man
ate a sandwich .” from the original document sentence “the man ate a big
sandwich with pickles .”

When there is more than one sentence in the source documents, the
search proceeds asynchronously across all sentences. When the sentences
are laid out adjacently, the end summary is obtained by taking all the green
summary nodes once a pre-defined word limit has been reached. This final
summary is a collection of subtrees grown off a sequence of underlying trees:
hence the name “vine-growth.”
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6.2.2 Data and Evaluation Criteria For data, we use the DUC 2005 data
set [11]. This consists of 50 document collections of 25 documents each;
each document collection includes a human-written query. Each document
collection additionally has five human-written “reference” summaries (250
words long, each) that serve as the gold standard. In the official DUC eval-
uations, all 50 collections are “test data.” However, since the DUC 2005
task is significantly different from previous DUC tasks, there is no a good
source of training data. Therefore, we report results based on 10-fold cross
validation. We train on 45 collections and test on the remaining 5.

Automatic evaluation is a notoriously difficult problem for document
summarization. The current popular choice for metric is Rouge [34], which
(roughly speaking) computes n-gram overlap between a system summary
and a set of human written summaries. In various experiments, Rouge has
been seen to correspond with human judgment of summary quality. In the
experiments described in this chapter, we use the “Rouge 2” metric, which
uses evenly weighted bigram scores.

6.2.3 Initial Policy Computing the best label completion under Rouge
metric for the vine-growth model is intractable. The intractability stems
from the model constraint that a word can only be added to a summary
after its parent is added. We therefore use an approximate, search-based
policy (see Section 3.4.2). In order to approximate the cost of a given par-
tial summary, we search for the best possible completion. That is, if our goal
is a 100 word summary and we have already created a 50 word summary,
then we execute beam search (beam size 20) for the remaining 50 words
that maximize the Rouge score.

6.2.4 Feature Functions Features in the vine-growth model may consider
any aspect of the currently generated summary, and any part of the input
document set. These features include simple lexical features: word identity,
stem and part of speech of the word under consideration, the syntactic
relation with its parent, the position and length of the sentence it appears
in, whether it appears in quotes, the length of the document it appears
in, the number of pronouns and attribution verbs in the subtree rooted at
the word. The features also include language model probabilities for: the
word, sentence and subtree under language models derived from the query,
a BAYESUM representation of the query, and the existing partial summary.

6.2.5 Experimental Results Experimental results are shown in Table 2. We
report Rouge scores for summaries of length 100 and length 250. We compare
the following systems. First, oracle systems that perform the summarization
task with knowledge of the true output, attempting to maximize the Rouge
score. We present results for an oracle sentence extraction system (Extr)
and an oracle vine-growth system (Vine). Second, we present the results of
the SEARN-based systems, again for both sentence extraction (Extr) and
vine-growth (Vine). Both of these are trained with respect to the oracle
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ORACLE SEARN BAYESUM

Vine | Extr Vine Extr DO05 D03 Base Best }
100 w || .0729 | .0362 || .0415 | .0345 || .0340 | .0316 || .0181 -
250 w || .1351 | .0809 || .0824 | .0767 || .0762 | .0698 || .0403 | .0725 }

Table 2 Summarization results; values are Rouge 2 scores (higher is better).

system. (Note that it is impossible to compare against competing structured
prediction techniques. This summarization problem, even in its simplified
form, is far too complex to be amenable to other methods.) For comparison,
we present results from the BAYESUM system [14,16], which achieved the
highest score according to human evaluations of responsiveness in DUC 05.
This system, as submitted to DUC 05, was trained on DUC 2003 data; the
results for this configuration are shown in the “D03” column. For the sake
of fair comparison, we also present the results of this system, trained in
the same cross-validation approach as the SEARN-based systems (column
“D05”). Finally, we present the results for the baseline system and for the
best DUC 2005 system (according to the Rouge 2 metric).

As we can see from Table 2 at the 100 word level, sentence extraction
is a nearly solved problem for this domain and this evaluation metric. That
is, the oracle sentence extraction system yields a Rouge score of 0.0362,
compared to the score achieved by the SEARN system of 0.0345. This differ-
ence is on the border of statistical significance at the 95% level. The next
noticeable item in the results is that, although the SEARN-based extraction
system comes quite close to the theoretical optimal, the oracle results for the
vine-growth method are significantly higher. Not surprisingly, under SEARN,
the summaries produced by the vine-growth technique are uniformally bet-
ter than those produced by raw extraction. The last aspect of the results
to notice is how the SEARN-based models compare to the best DUC 2005
system, which achieved a Rouge score of 0.0725. The SEARN-based systems
uniformly dominate this result, but this comparison is not fair due to the
training data. We can approximate the expected improvement for having
the new training data by comparing the BAYESUM system when trained on
the DUC 2005 and DUC 2003 data: the improvement is 0.0064 absolute.
When this result is added to the best DUC 2005 system, its score rises to
0.0789, which is better than the SEARN-based extraction system but not as
good as the vine-growth system. It should be noted that the best DUC 2005
system was a purely extractive system [59].

7 Discussion and Conclusions

In this paper, we have:

— Presented an algorithm, SEARN, for solving complex structured predic-
tion problems with minimal assumptions on the structure of the output
and loss function.
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— Compared the performance of SEARN against standard structured pre-
diction algorithms on standard sequence labeling tasks, showing that it
is competitive with existing techniques.

— Described a novel approach to summarization—the vine-growth method—
and applied SEARN to the underlying learning problem, yielding state-
of-the-art performance on standardized summarization data sets.

There are many lenses through which one can view the SEARN algorithm.

From an applied perspective, SEARN is an easy technique for training
models for which complex search algorithms must be used. For instance,
when using multiclass logistic regression as a base classifier for Hamming
loss, the first iteration of SEARN is identical to training a maximum en-
tropy Markov model. The subsequent iterations of SEARN can be seen as
attempting to get around the fact that MEMMs are trained assuming all
previous decisions are made correctly. This assumption is false, of course, in
practice. Similar recent algorithms such a decision-tree-based parsing [55]
and perceptron-based machine translation [32] can also be seen as running
a (slightly modified) first iteration of SEARN.

SEARN contrasts with more typical algorithms such as CRFs and M3Ns
based on considering how information is shared at test time. Standard algo-
rithms use exact (typically Viterbi) search to share full information across
the entire output, “trading off” one decision for another. SEARN takes an
alternative approach: it attempts to share information at training time. In
particular, by training the classifier using a loss based on both past ex-
perience and future expectations, the training attempts to integrate this
information during learning. This is not unsimilar to the “alternative ob-
jective” proposed by [24] for CRFs. One approach is not necessarily better
than the other; they are simply different ways to accomplish the same goal.

One potential limitation to SEARN is that when one trains a new classifier
on the output of a previous iteration’s classifier, it is usually going to be
the case that previous iteration’s classifier performs better on the training
data than on the test data. This means that, although training via SEARN
is likely preferable to training against only an initial policy, it can still
be overly optimistic. Based on the experimental evidence, it appears that
this has yet to be a serious concern, but it remains worrisome. There are
two easy ways to combat this problem. The first is simply to attempt to
ensure that the learned classifiers do not overfit at all. In practice, however,
this can be difficult. Another approach with a high computational cost is
cross-validation. Instead of training one classifier in each SEARN step, one
could train ten, each holding out a different 10% of the data. When asked
to run the “current” classifier on an example, the classifier not trained on
the example is used. This does not completely remove the possiblity of
overfitting, but significantly lessens its likelihood.

A second limitation, pointed out by [60], is that there is a slight dis-
parity between what SEARN does at a theoretical level and how SEARN
functions in practice. In particular, SEARN does not actually start with the
optimal policy. Even when we can compute the initial policy exactly, the
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“true outputs” on which this initial policy are based are potentially noisy.
This means that while 7 is optimal for the noisy data, it is not optimal for
the true data distribution. In fact, it is possible to construct noisy distri-
butions where SEARN performs poorly.® Finding other initial policies which
are closer to optimal in these situations is an open problem.

SEARN obeys a desirable theoretical property: given a good classifica-
tion algorithm, one is guaranteed a good structured prediction algorithm.
Importantly, this result is independent of the size of the search space or
the tractability of the search method. This shows that local learning—when
done properly—can lead to good global performance. From the perspec-
tive of applied machine learning, SEARN serves as an interpreter through
which engineers can easily make use of state-of-the-art machine learning
techniques.

In the context of structured prediction algorithms, SEARN lies some-
where between global learning algorithms, such as M®Ns and CRFs, and
local learning algorithms, such as those described [43]. The key difference
between SEARN and global algorithms is in how uncertainty is handled. In
global algorithms, the search algorithm is used at test time to propagate
uncertainty across the structure. In SEARN, the prediction costs are used
during training time to propagate uncertainty across the structure. Both
contrast with local learning, in which no uncertainty is propagated.

From a wider machine learning perspective, SEARN makes more apparent
the connection between reinforcement learning and structured prediction. In
particular, structured prediction can be viewed as a reinforcement learning
problem in a degenerate world in which all observations are available at
the initial time step. However, there are clearly alternative middle-grounds
between pure structured prediction and full-blown reinforcement learning
(and natural applications—such as planning—in this realm) for which this
connection might serve to be useful.

Despite these successes, there is much future work that is possible. One
significant open question on the theoretical side is that of sample complex-
ity: “How many examples do we need in order to achieve learning under
additional assumptions?” Related problems of semi-supervised and active
learning in the SEARN framework are also interesting and likely to produce
powerful extensions. Another vein of research is in applying SEARNto do-
mains other than language. Structured prediction problems arise in a large
variety of settings (vision, biology, system design, compilers, etc.). For each
of these domains, different sorts of search algorithms and different sorts
of features are necessary. Although SEARN has been discussed largely as a
method for solving structured prediction problems, it is, more generally, a
method for integrating search and learning. This leads to potential applica-
tions of SEARN that fall strictly outside the scope of structured prediction.

5 One can construct such a noisy distribution as follows. Suppose there is fun-
damental noise and a “safe” option which results in small loss. Suppose this safe
option is always more than a one step deviation from the highly noisy “optimal”
sequence. SEARN can be confused by this divergence.
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