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Abstract

We present a streaming model for large-scale clas-
sification (in the context of2-SVM) by leveraging
connections between learning and computational
geometry. The streaming model imposes the con-
straint that only a single pass over the data is al-
lowed. The/>-SVM is known to have an equivalent
formulation in terms of the minimum enclosing ball
(MEB) problem, and an efficient algorithm based
on the idea otore setsxists (CVM)[Tsanget al.,
2003. CVM learns &1 +¢)-approximate MEB for

a set of points and yields an approximate solution
to corresponding SVM instance. However CVM
works in batch mode requiring multiple passes over
the data. This paper presents a single-pass SVM
which is based on the minimum enclosing ball of
streaming data. We show that the MEB updates for
the streaming case can be easily adapted to learn the
SVM weight vector in a way similar to using on-
line stochastic gradient updates. Our algorithm per-
forms polylogarithmic computation at each exam-
ple, and requires very small and constant storage.
Experimental results show that, even in such re-
strictive settings, we can learn efficiently in just one
pass and get accuracies comparable to other state-
of-the-art SVM solvers (batch and online). We also
give an analysis of the algorithm, and discuss some
open issues and possible extensions.

Introduction

In spite of the severe limitations imposed by the streaming
framework, streaming algorithms have been successfully em
ployed in many different domaif§&uhaet al., 2003. Many

of the problems in geometry can be adapted to the stream-
ing setting and since many learning problems have equivalen
geometric formulations, streaming algorithms naturally-m
tivate the development of efficient techniques for solviog (
approximating) large-scale batch learning problems.

In this paper, we study the application of the stream model
to the problem of maximum-margin classification, in the
context of¢,-SVMs [Vapnik, 1998; Cristianini and Shawe-
Taylor, 200Q. Since the support vector machine is a widely
used classification framework, we believe success here will
encourage further research into other frameworks. SVMs are
known to have a natural formulation in terms of the minimum
enclosing ball problem in a high dimensional spEEsanget
al., 2005; 2007. This latter problem has been extensively
studied in the computational geometry literature and aslmit
natural streaming algorithniZarrabi-Zadeh and Chan, 2006;
Agarwalet al., 2004. We adapt these algorithms to the clas-
sification setting, provide some extensions, and outlimeeso
open issues. Our experiments show that we can learn effi-
ciently in just one pass and get competetive classification a
curacies on synthetic and real datasets.

2 Scaling up SVM Training

Support Vector Machines (SVM) are maximum-margin
kernel-based linear classifidGristianini and Shawe-Taylor,
2004 that are known to provide provably good generaliza-
tion bounddVapnik, 199§. Traditional SVM training is for-
mulated in terms of a quadratic program (QP) which is typ-

Learning in a streaming model poses the restriction that wécally optimized by a numerical solver. For a training size
are constrained both in terms of time, as well as storageof NV points, the typical time complexity i©(/N?) and stor-
Such scenarios are quite common, for example, in cases suelge required i$)(N?) and such requirements make SVMs
as analyzing network traffic data, when the data arrives in @rohibitively expensive for large scale applications. i€gb
streamed fashion at a very high rate. Streaming model alsapproaches to large scale SVMs, such as chunkiagnik,
applies to cases such as disk-resident large datasets whi@tB9d, decomposition method<hang and Lin, 20d1and
cannot be stored in memory. Unfortunately, standard legrni SMO[Platt, 1999 work by dividing the original problem into
algorithms do not scale well for such cases. To address su@maller subtasks or by scaling down the training data in some
scenarios, we propose applying 8teeam modebdf computa-
tion [Muthukrishnan, 200Bto supervised learning problems. ever, these approaches are typically heuristic in natiney t

In the stream model, we are allowed only one pass (or a smathay converge very slowly and do not provide rigorous guar-
number of passes) over an ordered data set, and polylogarithntees on training complexitifsanget al., 2004. There has
mic storage and polylogarithmic computation per elementbeen a recent surge in interest in the online learning titega

mannefYu et al, 2003; Lee and Mangasarian, 200How-



for SVMs due to the success of various gradient descent agt  Approximate and Streaming MEBs

proaches such as stochastic gradient based melZbdsg,
2004 and stochastic sub-gradient based approd&hedev-
Shwartzet al, 20079. These methods solve the SVM opti-
mization problem iteratively in steps, are quite efficieand

have very small computational requirements. Another rece

online algorithm LASVM[Bordeset al., 200 combines on-

line learning with active sampling and yields considerably
good performance doing single pass (or more passes) ov
the data. However, although fast and easy to train, for most
of the stochastic gradient based approaches, doing a singl
pass over the data does not suffice and they usually requi

running for several iterations before converging to a reaso
able solution.

3 Two-Class Soft Margin SVM as the MEB
Problem

n

re

The minimum enclosing ball problem has been extensively
studied in the computational geometry literature. An in-
stance of MEB, with a metric defined by an inner product,
can be solved using quadratic programniBayd and Van-
denberghe, 2034 However, this becomes prohibitively ex-
pensive as the dimensionality and cardinality of the data in

gjeases; for av-point SVM instance inD dimensions, the

esulting MEB instance consists of points in N + D di-
ensions.

Thus, attention has turned to efficient approximate solu-
tions for the MEB. Ad-approximate solution to the MEB
(6 > 1) is a pointc such thatmax,, d(x,,c) < JR*, where

R* is the radius of the true MEB solution. For example,
A (1 + €)-approximation for the MEB can be obtained by
extracting a very small subset (of sizg1/¢)) of the input
called acore-setlAgarwal et al,, 2004, and running an ex-

A minimum enclosing ball (MEB) instance is defined by a setact MEB algorithm on this s¢Badoiu and Clarkson, 2002

of pointsxy, ...,xy € RP and ametriel : RP xR — R20,
The goal is to find a point (theente) ¢ € R” that minimizes
the radiusk = max,, d(x,, c).

The 2-clasg/»,-SVM [Tsanget al, 2009 is defined by a
hypothesisf(x) = w’p(x), and a training set consisting
of N points{z, = (xu,yn)})_; with y, € {-1,1} and
x, € RP. The primal of the two-clas$s-SVM (we consider

This is the method originally employed in the CViMIsang
et al, 2004. [Har-Peledet al, 2007 take a more direct ap-
proach, constructing an explicit core set for the (appra@teh
maximum-margin hyperplane, without relying on the MEB
formulation. Both these algorithms take linear trainingei
and require very small storage. Note that-approximation
for the MEB directly yields a-approximation for the regu-

the unbiased case one—the extension is straightforwand) cdarized cost function associated with the SVM problem.

be written as

. 2 2
+C : 1
min ||wl| i:%m& (1)
st yi(Wolx)>1-§&, i=1,.,N (2)

The only difference between tlfg-SVM and the standard
SVM is that the penalty term has the fof@ 3°,, &,,%) rather
than(C )", &).

We assume a kerndt with associated nonlinear feature
mapy. We further assume thaf has the properti (x, x) =
%, Wheres is a fixed constarffTsanget al,, 2004. Most stan-

Unfortunately, the core-set approach cannot be adapted to
a streaming setting, since it requir@$1/¢) passes over the
training data. Two one-pass streaming algorithms for the
MEB problem are known. The firgAgarwal et al., 2004
finds a(1 + €) approximation using)((1/¢).P/2]) storage
and O((1/¢)P/2IN) time. Unfortunately, the exponential
dependence o® makes this algorithm impractical. At the
other end of the space-approximation tradeoff, the secbnd a
gorithm[Zarrabi-Zadeh and Chan, 200&ores only the cen-
ter and the radius of the current ball, requiri@gD) space.

his algorithm yields a 3/2-approximation to the optimal en

dard kernels such as the isotropic, dot product (normalize losing ball radius.

inputs), and normalized kernels satisfy this criterion.
Suppose we replace the mappipgk,,) onx,, by another
nonlinear mapping(z,,) onz, such that (for unbiased case)

3)

o(zn) = yﬂ‘P(Xn);Oil/Qen T

4.1 The StreamSVM Algorithm

We adapt the algorithm dZarrabi-Zadeh and Chan, 2006
for computing an approximate maximum margin classifier.
The algorithm initializes with a single point (and therefan

The mapping is done in a way that that the label informatiorMEB of radius zero). When a new point is read in off the

yn IS subsumed in the new feature mapessentially, con-

stream, the algorithm checks whether or not the current MEB

verting a supervised learning problem into an unsupervisedan enclose this point. If so, the point is discarded. If tia,
one). The first term in the mapping corresponds to the featurpoint is used to suitably update the center and radius of the
term and the second term accounts for a regularizationteffeccurrent MEB. All such selected points define a core set of the

whereC is the misclassification cost,, is a vector of dimen-
sion N, having all entries as zero, except i entry which
is equal to one.

It was shown il Tsanget al,, 2004 that the MEB instance
(p(z1), ¢(2z2), ... p(znN)), with the metric defined by the in-
duced inner product, is dual to the correspondipgsVM
instance (1). The weight vectev of the maximum margin
hypothesis can then be obtained from the centd#ithe MEB
usin7g] the constraints induced by the Lagrandi&sanget al.,
2007.

original point set.

Letp; be the input point causing an update to the MEB and
B, be the resulting ball after the update. From figure 1, it is
easy to verify that the new centey lies on the line joining
the old center;_; and the new poinp,;. The radius; and
the centek; of the resulting MEB can be defined by simple
update equations.

(4)
()

TP =Ti—1+ 0
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Here2d; = (||p; — ci_1|| — 1) is the closest distance of Algorithm 1 StreamSVM

the new poinp; from the old ballB; ;. Using these, we can 1. |nput: examplesx,,, yn)ne1...v, Slack parametef’
define a closed-form analytical update equation for the newy. Qutput: weights ), radius 2), number of support vec-

ball Bl tors (ZW)
5 3: Initialize: M = ;R =02 = 1,w = i1 x1
c;,=c¢;_1+ m(l)i —Ci—1) (6) 4: forn=2to N do
Pi = Ci1 5. Compute distance to center:

d= \/HW - yanHQ +&2 + 1/C

6. ifd> Rthen

7 w=w+1(1-R/d)(ynxy — W)

8: R=R+ 3(d—R)
i o0 2=¢[1-30-R/d)]’+[L01-R/)]
‘ 10: M=M+1

11:  endif

12: end for

Algorithm 2 StreamSVM with lookahead L

Input: examplesx,, yn)ne1...N, Slack parametet’, looka-
It can be shown that, for adversarially constructed data, th  head parameter > 1
radius of the MEB computed by the algorithm has a lower-Output: weights §v), radius ), upper bound on number of
bound of(1 + 1/2)/2 and a worst-case upper-bound¥f support vectorsi/)
[zarrabi-Zadeh and Chan, 2006 _ : Initialize: M = 1, R = 0;€2 = 1;S = 0w = y1x;
We adapt these updates in a natural way in the augmenteg. ¢, .. — 9 to N do
feature space® (see Algorithm 1). Each selected point be- 3 Compute distance to center:
longs to thecore setfor the MEB. The support vectors of the d= /W —guxn]? + & 1 1/C

Figure 1: Ball updates

corresponding SVM instance come from this set. It is easy 4 ifd> Rthen
to verify that the update equations for weight vectei @nd : iy . )
the margin (R) in StreamSVM correspond to the center and5' gdij SXSTDIZL E’O the active set:
radius updates for the ball in equation 7 and 4 respectively.s, if |§| - L%[/Fller?
Theg? term is the distance calculation is included to account 7. U d_atew R, €2 to enclose the ballw, R, £2)
for the fact that the distance computations are being done in"" ar?d all points IS e
the D + N dimensional augmented feature spgcwhich, 8: M= ]\/}3+ L'S—0
for the linear kernel case, is given by: 9. end if_ i
= — =12 T 10:  endif
P2n) = [Ynxn; € e"} ' ) 11: end for

Also note that, because we perform only a single pass over thi?: if [S| > 0 then ) )

data and the,, components are all mutually orthogonal, we 13:  Updatew, 12, ¢* to enclose the ballw, 1z, £*) and all
never need to explicitly store them. The number of updates points inS

to the weight vector is limited by the number of core vectorst4 M =M + S|

of the MEB, which we have experimentally found to be much5: €nd if

smaller as compared to other algorithms (such as Percéptron

The space complexity of StreamSVM is small since only th
weight vector and the radius need be stored.

4.2 Kemelized _StreamS_\_/M ] It was shown in[Zarrabi-Zadeh and Chan, 2d0that any
Although our main exposition and experiments are withstreaming MEB algorithm that uses onfy(D) storage ob-
linear kernels, it is straightforward to extend the algo-i :ns a lower-bound ofl + v/2)/2 and an upper-bound of
rithm for nonlinear kernels. In that case, algorithm 1,3/5 o the quality of solution (i.e., the radius of final MEB).
instead of storing the weight vectow, stores anN-  cjaary this is a conservative approximation and would af-
dimensional vector (.)f Lagrange coef_flme_rtts_lmtlallzed fect the obtained margin of the resulting SVM classifier (and
as [y, .. "0]2' The distance computation is line 5 are re-ponco the classification performance). In order to do bietter
placed byd” = 3, ., anamk(xn,Xm) + k(xnjxn) ~  just a single pass, one possible conjecture could be that the
2Yn Y Omk(Xn,xm) + & + 1/C, and the weight vec- algorithm mustremembemore. To this end, we therefore
tor updates in line 7 can be replaced by Lagrange coeffiextended algorithm-1 to simultaneously stdreveight vec-
cients updatesy., 1 = arn—1(1 — 5 (1 = R/d)), o =  tors (or “balls”). The space complexity of this algorithm is
1 (1= R/d) yn. L(D + 1) floats and it still makes only a single pass over the

e4.3 StreamSVM approximation bounds and
extension to multiple balls



data. In the MEB setting, our algorithm chooses with eactpasses of CVM to see how long does it take for CVM to beat
arriving datapoint (that is not already enclosed in any ef th StreamSVM (we note here that CVM requires at least two
balls) how the current + 1 balls (theL balls plus the new passes over the data to return a solution). We used a lin-
data point) should be merged, resulting again into a sét of ear kernel for both. Shown in Figure 2 are the results on
balls. At the end, the final set df balls are merged together MNIST 8vs9 data and it turns out that it takes several hun-
to give the final MEB. A special variant of the balls case dreds of passes of CVM to beat the single pass accuracy of
is when all but one of thd balls are of zero radius. This StreamSVM. Similar results were obtained for other dagaset
amounts to storing a ball of non-zero radius and to keeping aut we do not report them here due to space limitations.
bufferof L. many data-points (we call this th@okaheadlgo-
rithm - Algorithm 2). Any incoming point, if not already en- VM vs StreamSVM: MNIST Data (8v5.)
closed in the current ball, is stored in the buffer. We sohee t N
MEB problem (using a quadratic program of sizewhen-
ever the buffer is full. Note that algorithm 1 is a specialecas
of algorithm 2 with =1, with the MEB updates available in
a closed analytical form (rather than having to solve a QP).
Algorithm 1 takes linear time in terms of the input size.
Algorithm 2 which uses a lookahead bfsolves a quadratic
program of sizel, whenever the buffer gets full. This step
takesO(L?) times. The number of such updateiéN/L)
(in practice, it is considerably less thav/ L) and thus the
over all complexity for the lookahead caseQ$N L?). For
small lookaheads, this is roughty( V).

Percent Accuracy

6 15
Number of passes of CVM

5 Experiments

We evaluate our algorithm on several synthetic and reaFigure 2: MNIST 8vs9 data: Number of passes CVM takes be-
datasets and compare it against several state-of-thé/att S fore achieving comparable single-pass accuracy of Strédm
solvers. We use 3 crieria for evaluations: a) Single-pas&Xis represents number of passes of CVM and Y axis repretients
classification accuracies compared against single-pass-of classification accuracy.

line SVM solvers such as iterative sub-gradient solver Pega

sos[Shalev-Shwartzt al, 2007, LASVM [Bordeset al,,

2003’ and Perceptroi]Rosenb'att, 1988 b) Comparison Error‘barson‘accurac‘yvar\at:cnsw.r‘!.rando‘mstrea‘mingon?er(mrt‘iiffersnl‘L)

with CVM [Tsanget al, 2003 which is a batch SVM al-
gorithm based on the MEB formulation. c) Effect of using ol ]
lookahead in StreamSVM. For fairness, all the algorithms ,W{
used a linear kernel.

5.1 Single-Pass Classification Accuracies
The single-pass classification accuracies of StreamSVM and

851

Percent Accuracy

other online SVM solvers are shown in table-1. Details of a0l

the datasets used are shown in table-1. To get a sense of how

good the single-pass approximation of our algorithm is, we 75t

also report the classification accuracies of batch-moésg (i.

all data in memory, and multiple passes) libSVM solver with o . . . .
linear kernel on all the datasets. The results suggest thrat o o ey

single-pass algorithm StreamSVM, using a small reasonable

lookahead ' pe_n_‘orms comparably to Fhe batch-mode I'bSVM Figure 3:Single-pass with varying lookahead on MNIST 8vs9 data:
and does significantly better than a single pass of othen@nli performance w.r.t random ordering of streaming. X axisesents

SVM solvers. the lookahead parameter and Y axis represents classificaticu-
. . racy. Verticle bars represent the standard deviationsdaracies for
5.2 Comparison with CVM a given lookahead.

We compared our algorithm with CVM which, like our al-

gorithm, is based on a MEB formulation. CVM is highly

efficient for large datasets but it operates in batch modi; ma 2-3 ~ Effect of Lookahead

ing one pass through the data for each core vector. We a\e also investigated the effect of doing higher-order leoka
interested in knowing how many passes the CVM must maké&eads on the data. For this, we variedthe lookahead pa-
over the data before it achieves an accuracy comparable& to otameter) and, for each, tested Algorithm 2 on 100 random
streaming algorithm. For that purpose, we compared the agermutations of the data stream order, also recording #ime st
curacy of our single-pass StreamSVM against two and moreard deviation of the classification accuracies with resgec



# Examples IbSVM | Perceptron Pegasos LASVM StreamSVM
Data Set Dim | Train Test (batch) k=1 k=20 Algo-1 Algo-2
Synthetic A 2 |20,000 200 96.5 955 83.8 89.9 96.5 955 97.0
Synthetic B 3 | 20,000 200 66.0 68.0 57.05 65.85| 64.5 64.4 68.5
Synthetic C 5 | 20,000 200 93.2 77.0 55.0 73.2 68.0 73.1 87.5
Waveform 21 | 4000 1000 89.4 72.5 77.34 78.12| 77.6 74.3 78.4
MNIST (Ovsl) | 784 | 12,665 2115| 99.52 99.47 95.06 99.48| 98.82 99.34 99.71
MNIST (8vs9) | 784 | 11,800 1983 | 96.57 95.9 69.41 90.62| 90.32 84.75 94.7
IJCNN 22 | 35,000 91,701 91.64 64.82 67.35 88.9 | 74.27 85.32 87.81
w3a 300 | 44,837 4912 | 98.29 89.27 57.36 87.28| 96.95 88.56  89.06

Table 1:Single pass classification accuracies of various algosttatt using linear kernel). The synthetic datasets (A,By€)e generated
using normally distributed clusters, and were of about 8Bp@asability. lilbSVM, used as the absolute benchmark, wasirbatch mode (all
data in memory). StreamSVM Algo-2 used a small lookaheatld). Note: We make the Pegasos implementation do a singlepsoxer
data and have a user chosen block &ifer subgradient computations (we used k=1, and k=20 akirsitogua lookahead of 20). Perceptron
and LASVM are also run for a single pass and do not need blags<d be specified. All results are averaged over 20 rung.(vandom
orderings of the stream)

the data-order permutations. Note that the algorithmmilt ~ for the lookahead algorithm as for the no-lookahead algo-
forms a single pass over the data. Figure 3 shows the resultghm. To obtain the /2-upper bound result, one can show a
on the MNIST 8vs9 data (similar results were obtained fornearly identical construction as t#@arrabi-Zadeh and Chan,
other datasets but not shown due to space limitations).ign th 2006 whereL — 1 points are packed in a small, carefully
figure, we see two effects. Firstly, as the lookahead inefeas constructed cloud the boundary of the true MEB.
performance goes up. This is to be expected since in the limit  Alternatively, one can analyze these algorithms in the ran-
as the lookahead approaches the data set size, we will soldom stream setting. Here, the input points are chosen adver-
the exact MEB problem (albeit at a high computational cost)sarially, but theiorderis permuted randomly. The lookahead
The important thing to note here is that even with a smallmodel is not strengthened in this setting either: we can show
lookahead ofl0, the performance converges. Secondly, weboth that the lower bound for no-lookahead algorithms, as
see that the standard deviation of the result decreaseg as tell as the 3/2-upper bound for the specific no-lookahead al-
lookahead increases. This shows experimentally that highegorithm described, generalize. For the former, see Figure 4
lookaheads make the algorithm less susceptible to badly oke place(N — 1)/2 points around0,1) and (N — 1)/2
d_ered data. Thisis interesting from an empirical perspecti points around0, —1) and one point atl + /2,0). The al-
given that we can show that in theory, any valulok N gorithm will only beat the(1 + v/2)/2 lower bound if the
cannot improve upon the 3/2-approximation guaranteed fogjngleton appears in the firét points, wherel. is the looka-
L=1 head used. Assuming the lookahead is polylogarithmi¥ in
(which must be true for a streaming algorithm), this means
6 Analysis, Open Problems, and Extensions  that asN — o, the probability of a better bound tends to-
ward zero. Note, however, that this applies only to the leoka
head model, not to the more general multiple balls model,
1. Are the(1 + v/2)/2 lower-bound and th&/2 upper-  where itmaybe possible to obtain a tighter bounds in the ran-
bound on MEB radius indeed the best achievable in alom stream setting.
single pass over the data?

2. Is it possible to use a richer geometric structure instead (N1372
of a ball and come up with streaming variants with prov- i
ably good approximation bounds? @

We discuss these in some more detail here.

There are several open problems that this work brings up:

6.1 Improving the Theoretical Bounds (M-1742

One might conjecture that storing more information (i.e., ]ﬁ
more points) would give better approximation guarantees in
the streaming setting. Although the empirical results stobw
that such approaches do result in better classificationraccu )
cies, this is not theoretically true in many cases. Figure 4:An adversarially constructed setting.
For instance, in the adversarial stream setting, one can
show thateitherthe lookahead algorithmor its more gen- . .
eral case (the multiple balls algorithm) improves the baund 6-2  Ellipsoidal Balls
given by the simple no-lookahead case (Algorithm-1). In par Instead of using a minimum enclosing ball of points, an al-
ticular, one can prove an identical upper- and lower-boundernative could be to use a minimum volume ellipsoid (MVE)



[Kumaret al, 2009. An ellipsoid inR” is defined as fol- [Cristianini and Shawe-Taylor, 20D(Nello Cristianini and John
lows: {x : (x — c¢)A(x —c) <= 1} wherec € RP, Shawe-TaylorAn introduction to support vector machinésam-
A € RP#P ‘andA = 0 (positive semi-definite). bridge University Press, 2000.

Note that a ball, upon inclusion of a new point, expanddDredzeet al, 200§ Mark Dredze, Koby Crammer, and Fernando
equally in all dimensions which may be unnecessary. On the Pereira. Confidence-weighted linear classificatiod QKL '08:
other hand, an ellipsoid can have several axes and scales of Proceedings of the 25th international conference on Maghin
variations (modulated by the covariance matAix. This al- learning pages 264-271, New York, NY, USA, 2008. ACM.
lows the ellipsoid to expand only along those directionsrnghe [Guhaet al, 2003 Sudipto Guha, Adam Meyerson, Nina Mishra,
needed. In addition, such an approach can also be seen alongRajeev Motwani, and Liadan O'Callaghan. Clustering data
the lines of confidence weighted linear classifi@sedzeet streams: Theory and practickEE Transactions on Knowledge
al., 2004. The confidence weighted (CW) method assumes &nd Data Engineeringl5(3):515-528, 2003.

a Gaussian distribution over the space of weight vectors ankHar-Pelecet al, 2007 Sariel Har-Peled, Dan Roth, and Dav Zi-
updates the mean and covariance parameters upon witnessingmak. Maximum margin coresets for active and noise tolerant
each incoming example. Just as CW maintains the models 'earning. InlJCAI, 2007.
uncertainty using a Gaussian, an ellipsoid generaizaton ¢ [Kumaretal, 200§ P. Kumar, E. A. Yildirim, and Communi-
model the uncertainty using the covariance mafixRecent cated Y. Zhang. Minimum volume enclosing ellipsoids andecor
work has shown that there exist streaming possibilities for Sets. Journal of Optimization Theory and Applicatioris26:1—
MVE [Mukhopadhyay and Greene, 2408The approxima- 21, 2005.
tion gaurantees, however, are very conservative. It woald b[Lee and Mangasarian, 200uh-Jye Lee and Olvi L. Mangasar-
interesting to come up with improved streaming algorithms ian. Rsvm: Reduced support vector machinesProc. of Sym-
for the MVE case and adapt them for classification settings. ~ Posium on Data Mining (SDMP001.

[Mukhopadhyay and Greene, 2Q08sish Mukhopadhyay and Eu-
7 Conclusion gene Greene. A streaming algorithm for computing an approxi

o ) ) mate minimum spanning ellips&8th Fall Workshop on Compu-
Within the streaming framework for learning, we have pre- tational Geometry2008.

Septed an eﬁlqlent, SIngIe-paéﬁ-SVM .'?am'”g algor!thm [Muthukrishnan, 2006 S. Muthukrishnan. Data streams: Algo-
using a streaming algorithm for the minimum enclosing ball” " jthms and applicationsFoundations and Trends in Theoretical
problem. We have also extended this algorithm to use a computer Sciengd(2), 2005.

Iookahea@o increase robustness ggamst poorly ordered d.at Platt, 1999 John C. Platt. Fast training of support vector machines
Our algorithm, Stre%mSVM, satisfies a proven theoretical' qjng sequential minimal optimization. pages 185-208, Cam
bound: it provides 43 )-approximation to the optimal solu- bridge, MA, USA, 1999. MIT Press.

tion. Despite this conservative bound, our algorithm isezxp [Rosenblatt, 1948 F. Rosenblatt. The perception: a probabilistic

imentally competitive with alt.emative tec_hniques in “?mf model for information storage and organization in the braifi T
accuracy, and learns much simpler solutions. We believe tha pyess 1988.

a car eful study of stream-based learning _vyou!d lead to hlgl’[‘Shalev-Shwaruas-t al, 2007 Shai Shalev-Shwartz, Yoram Singer,
quah_ty sca_lable SOIUt.'OnS for other Class'f'cat'on pmhﬁ.e and Nathan Srebro. Pegasos: Primal estimated sub-gradient
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