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Abstract

Natural language processing is replete with problems whose outputs are highly complex

and structured. The current state-of-the-art in machine learning is not yet sufficiently

general to be applied to general problems in NLP. In this thesis, I present Searn (for

“search-learn”), an approach to learning for structured outputs that is applicable to the

wide variety of problems encountered in natural language (and, hopefully, to problems in

other domains, such as vision and biology). To demonstrate Searn’s general applicability,

I present applications in such diverse areas as automatic document summarization and

entity detection and tracking. In these applications, Searn is empirically shown to

achieve state-of-the-art performance.

Searn is based on an integration of learning and search. This contrasts with standard

approaches that define a model, learn parameters for that model, and then use the model

and the learned parameters to produce new outputs. In most NLP problems, the “produce

new outputs” step includes an intractable computation. One must therefore employ a

heuristic search function for the production step. Instead of shying away from search,

Searn attacks it head on and considers structured prediction to be defined by a search

problem. The corresponding learning problem is then made natural: learn parameters so

that search succeeds.

xiv



The two application domains I study most closely in this thesis are entity detection

and tracking (EDT) and automatic document summarization. EDT is the problem of

finding all references to people, places and organizations in a document and identifying

their relationships. Summarization is the task of producing a short summary for either

a single document or for a collection of documents. These problems exhibit complex

structure that cannot be captured and exploited using previously proposed structured

prediction algorithms. By applying Searn to these problems, I am able to learn models

that benefit from complex, non-local features of both the input and the output. Such

features would not be available to structured prediction algorithm that require model

tractability. These improvements lead to state-of-the-art performance on standardized

data sets with low computational overhead.

Searn operates by transforming structured prediction problems into a collection of

classification problems, to which any standard binary classifier may be applied (for in-

stance, a support vector machine or decision tree). In fact, Searn represents a family of

structured prediction algorithms depending on the classifier and search space used. From

a theoretical perspective, Searn satisfies a strong fundamental performance guarantee:

given a good classification algorithm, Searn yields a good structured prediction algo-

rithm. Such theoretical results are possible for other structured prediction only when

the underlying model is tractable. For Searn, I am able to state strong results that

are independent of the size or tractability of the search space. This provides theoretical

justification for integrating search with learning.

xv



Chapter 1

Introduction

I present an efficient, theoretically justified learning algorithm for structured prediction
that achieves state-of-the-art performance in a wide range of natural language processing
problems. Structured prediction is a generalized task that encompasses many problems
in natural language processing, as well as many problems from computational biology,
computational vision and other areas. The key issue in structured prediction that differen-
tiates it from more canonical machine learning tasks (such as classification or regression)
is that the objects being predicted have internal structure. Adequately representing this
internal structure is key to obtaining good solutions to real-world problems, and an al-
gorithm that can function under any notion of structure is to be preferred to one with
restricted applicability.

1.1 Structure in Language

Many tasks in natural language processing can be formulated as mappings from inputs
x ∈ X to outputs y ∈ Y. For example, in machine translation, X might be the set of
all French sentences and Y might be the set of all English sentences. In this setting,
one can view machine translation as the task of developing a mapping from X to Y
that obeys some properties (adequacy of the translation to the original and fluency of
the translation). Other common NLP tasks also fit naturally into this framework. In
automatic document summarization, x ∈ X is a document (or document collection) and
y ∈ Y is a summary. In information extraction, x ∈ X is a document and y ∈ Y is the
relevant “information” contained in x. In sequence labeling and parsing, x is a sentence
and y is the corresponding annotation.

For each of these problems, specialized solutions have been developed. Beginning with
the influential work in machine translation by Brown et al. (1993), we have witnessed a
burgeoning of statistical approaches to natural language problems. We have high perfor-
mance models for machine translation (Och, 2003), parsing (Collins, 2003; Charniak and
Johnson, 2005), information extraction (Bikel, Schwartz, and Weischedel, 1999; Florian
et al., 2004; Wellner et al., 2004), summarization (Knight and Marcu, 2002; Barzilay,
2003; Zajic, Dorr, and Schwartz, 2004), part of speech tagging (Brill, 1995) and syntactic
chunking (Punyakanok and Roth, 2001; Zhang, Damerau, and Johnson, 2002; Sutton,
Rohanimanesh, and McCallum, 2004; Sutton, Sindelar, and McCallum, 2005), to name a

1



JERUSALEMnam
gpe–1 – The commandernom

per–2 of Israelipre
gpe–3 troopsnom

per–4 in the
West Banknam

loc–5 said there was a simple goal to the helicopterpre
veh–6 assassination on Thurs-

day of a gun-wielding local Palestinianpre
gpe–7 leadernom

per–8 . “ Ipro
per–2 hope it will reduce the

violence and bring back reason to this areanom
loc–9 ” , Maj Genpre

per–2 Yitzhak Eitannam
per–2 told

reportersnom
per–10 at a briefing hours after three missilesnom

wea–11 fired from an Apachepre
veh–6

helicopternom
veh–6 killed Hussein Obaiyatnam

per–8 , along with two middle-aged womennom
per–12

standing near hispro
per–8 vannom

veh–13 in Beit Sahurnam
gpe–14 , near Bethlehemnam

gpe–15 . Instead
, it has touched off one of the bloodiest and most intense weekends of fighting yet
in the six-week-old conflict , with gunfire crackling through the West Banknam

loc–5 and
Gaza Stripnam

loc–16 . Five Palestiniansnom
per–17 and an Israelipre

gpe–3 soldiernom
per–18 were shot

dead on Friday .

Figure 1.1: An example paragraph extract from a document from our training data with
entities identified.

few. With a handful of exceptions (primarily the work stemming from the use of condi-
tional random fields), the majority of these techniques have required the development of
specialized algorithms for performing the parameter learning. One goal of this thesis is
to provide a generic learning technique that can be applied to a large variety of problems,
allowing the researcher to focus effort on other aspects of natural language problems.

1.2 Example Problem: Entity Detection and Tracking

For the purposes of clear exposition, I will use the entity detection and tracking (EDT)
problem as a running example throughout the thesis. (Additionally, of all the tasks I
attack in this thesis, EDT is the most significant.)

The entity detection and tracking problem focuses on discovering the set of entities
discussed in a document and identifying the textual span of the document (the mentions)
that refer to these entities. As part of the detection phase, a system must also identify,
for each entity, its corresponding entity type (person, place, organization, etc.) and, for
each mention of an entity, its mention type (name, nominal, pronoun, etc.).

In Figure 1.2, I show one paragraph from the data set I use, wherein entities have
been identified, types have been disambiguated and coreference chains have been marked.
In this paragraph, I underline every entity mention. Each mention is followed by a
superscript that identifies the mention type and a subscript that identifies both the entity
type and coreference chain of that mention. For instance, the word “commander” is a
nominal reference to a person, identified as entity number 2. At the beginning of the
second sentence, the word “I” is a pronominal mention also referring to entity 2 (and
hence is the same entity). A few of the coreference chains that appear in this extract are:
{JERUSALEM}, {commander, I, Gen, Yitzhak Eitan}, {Israeli, Israeli} and {troops}.

Entity detection and tracking is interesting from three separate angles. From a lin-
guistics perspective, identifying coreference is a challenging problem. An analysis of
what sources of knowledge are required to adequately solve this problem would greatly
increase our state of knowledge. From a computer science perspective, it is computation-
ally challenging. Even just the coreference task—identifying the entity chains given the
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mentions—turns out to be FNP-hard1 under any reasonable model. This can be shown
by reduction to graph partitioning (McCallum and Wellner, 2004). Developing efficient
algorithms for solving this problem is of utmost importance to building a system that
can function in the real-world. Finally, from a machine learning perspective, this task is
interesting because it exhibits significantly complex structure. A machine learning tech-
nique that could solve EDT directly would need to be able to make much more complex
decisions than simple “yes/no” answers.

Like all natural language processing problems, the primary difficulty in the EDT
task is ambiguity and the multiple diverse sources of information required to resolve
this ambiguity. Consider, for instance, the example paragraph shown in Figure 1.2.
Identifying that the “I” in the second sentence is the same person as the “commander”
in the first sentence is an extremely challenging inference to make. In fact, it is possible
that the two mentions actually refer to two different entities who happen to agree in
what they say. Identifying that the “Gen” entity is the same as “Yitzhak Eitan” requires
some knowledge of syntax, as does linking this entity with the pronoun “I.” On the other
hand, identifying that the “Apache” referred to in the second sentence is coreferent with
“helicopter” form the first sentence requires external knowledge that an Apache is a type
of helicopter. Identifying that “his” in the second sentence is coreferent with “Hussein
Obaiyat” and not “Yitzhak Eitan” requires further syntactic knowledge.

From a machine learning perspective, the EDT problem is hard because of the ne-
cessity for tying decisions together. That is, the decision at the end of the example in
Figure 1.2 that stipulates that “West Bank” is a named location is wholly tied to the
decision at the beginning of the example that the same string is also a named location.
Learning under the influence of such mutually reinforced decisions is challenging. A
significant contribution of this thesis is a technique for dealing with this difficulty.

1.3 The Role of Search

Natural language processing problems like those discussed in Section 1.6—and structured
prediction problems more generally—all include a search component. This component is
inherantly tied to the fact that structured prediction involves producing something more
complex than a single scalar response. To find the best (or approximate best) output,
some variety of search is necessary.

In real-world NLP applications, search comes in many flavors. In very rare cases,
one can apply dynamic programming-based exact search techniques. This occurs most
frequently in sequence labeling problems or in natural language parsing. However, in
order to make the problems amenable to dynamic programming (and hence efficient),
restrictions must be placed on the models and feature spaces. In particular, the “Markov
assumption” must be used in sequence labeling tasks: this states that the features used
to predict the label for the word at position i can only refer to the k most recent other
labels (for typical k ∈ {0, 1, 2}). In the case of parsing, a similar assumption is used: that
the grammar is context free. Although these assumptions patently violate what we know
about language, they are necessary for maintaining a polynomial time search algorithm.

1See Appendix A.3 for a discussion of the computational complexity classes relevant to this thesis.

3



Unfortunately, being polynomial time is often not sufficient in practice. For instance,
lexicalized context free parsing is O(N 6), where N is the length of the sentence (Manning
and Schutze, 2000). Even worse, synchronous context free parsing, as used in syntactic
machine translation, is O(N 12), where N is the length of the input sentence (Huang
and Chiang, 2005). Even simple sequence labeling is O(NK2), where N is the length
of the sentence and K is the number of possible labels. When K is very large (on the
order of hundreds), such as for phoneme recognition, K2 is very costly (Pal, Sutton, and
McCallum, 2006). In other applications, there simply is no polynomial time solution
under even very simplified models; see (Germann et al., 2003) for an example in machine
translation.

The effectively intractable (intractable or high-order polynomial) nature of these im-
portant problems has led to the use of approximate search algorithms. These include
greedy search (Germann et al., 2003), beam search (Och, Zens, and Ney, 2003; Pal, Sut-
ton, and McCallum, 2006), approximate A* search (Klein and Manning, 2003b), lazy
pruning, hill-climbing search, and others (Russell and Norvig, 1995). None of these al-
gorithms is guaranteed to find the best possible output. In practice, this is a significant
problem. Each requires domain-specific tweaking of search parameters to balance effi-
ciency against search errors. Performing this tweaking well is often incredibly difficult.

1.4 Learning in Search

The canonical way of looking at structured prediction problems is as follows. First, one
constructs a model. This model effectively tells us: for a given input, what are all the
possible outputs. For instance, in machine translation, a phrase-based model tells us that
the set of possible translations for a given Arabic input sentence is the set of all English
sentences that can be derived through a sequence of phrase translation and reordering
steps. In sequence labeling, the model tells us all the possible output sequences for a
given input string (typically this is just the set of all sequences over an alphabet of tags
of equal length to the input sentence).

Once one has a model, one attaches features to that model. The goal of the features
is to identify characteristics of input/output pairs that are indicative of whether the
output is “good” or not. For translation, these features might look like phrase translation
probabilities. For sequence labeling, the features are often lexicaled pairs, such as “assign
label ‘determiner’ to the word ‘the’.” The features come with corresponding parameters,
and the goal of learning is to adjust the parameters so that, for a given input, out of
all possible outputs considered by the model, the “correct one” has a high score. The
corresponding search problem is to find the output with the highest score.

The approach advocated in this thesis falls under the heading of learning in search.
The key premise of this paradigm is that given that one will be applying search to find
the best output, one should adjust the learning algorithm to account for this. This idea
has been previously explored by Boyan and Moore (1996), Collins and Roark (2004) and
me (Daumé III and Marcu, 2005c). However, the algorithm described in this thesis takes
this idea one step further. Instead of accounting for search in the process of learning, I
treat the structured prediction problem as being defined by a search process. The result
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is that the role played originally by the model is now played by the specification of a
search algorithm, and the learning involved is only to learn how to search.

The specific algorithm I describe, Searn, works on the following basic principle. Each
decision made during search is treated as a (large) classification problem. The goal is to
learn a classifier that will make each search decision optimally. The primary difficulty is
that in order to define “optimally” we must take into account what this same classifier did
in the past search steps and what it will do in future search steps. I propose a relatively
straightforward iterative algorithm for optimizing in this chicken-and-egg situation.

1.5 Contributions

The primary contribution in this thesis is the development of an algorithm called Searn

(for “search-learn”) for solving structured prediction problems under any model, any
feature functions and any loss. Unlike previous approaches to the structured prediction
problem (see Section 2.2), Searn makes no assumptions of conditional independence and
is computationally efficient in a superset of those problems to which competing generic
algorithms may be applied.

I formally show that Searn possesses many desirable properties (see Chapter 3).
Most importantly, I show that the difference in performance between the model that
Searn learns and the best possible model is small (under certain conditions). This result
holds independent of the model structure or the feature functions and is a significant
improvement over techniques whose performance depends strongly on the locality of fea-
tures in the output. More generally, I show that any problem that can be solved efficiently
by competing techniques can also be solved efficiently by Searn. Finally, I show that
Searn is easily extended to hidden variable problems, both in the unsupervised and
semi-supervised settings, as well as learning under weak feedback (see Chapter 7).

In addition to having attractive theoretical properties, I show that Searn performs
very well in a set of diverse real-world problems. These problems include the standard
sequence labeling tasks considered by most other structured prediction techniques as well
as the more complex joint sequence labeling task (see Chapter 4). However, the true
test of Searn is in problems with more complex structure. I apply Searn to a complex
information extraction problem—entity detection and tracking—and obtain a state-of-
the-art model (see Chapter 5). Finally, I apply Searn in the development of a novel
model for automatic summarization (see Chapter 6) that easily surpasses the limitations
of any other current structured prediction technique.

In addition to the main contributions described above, the development of Searn

has led to several other results. The most significant secondary result is that, to my
knowledge, Searn is the first algorithm to show a strong connection between structured
prediction and reinforcement learning. This connection alone opens up the possibility for
many avenues of future research (some of which are discussed in Chapter 7). Additionally,
this thesis opens up the possibility to ask new interesting questions about the connection
between computational complexity, search and learning (also discussed in Chapter 7).
Finally, I will make available many of the applications developed in this thesis to the
general public to allow others to benefit from this work.
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1.6 An Overview of This Thesis

This thesis is presented in three parts. The first part, comprising the next two chapters,
focuses on structured prediction as a machine learning problem. This part concludes
with a description of my structured prediction algorithm, Searn. The second part of
the thesis, comprising Chapter 4 though Chapter 6, discusses the application of Searn

to three problems in NLP (one problem per chapter). The third and final part of the
thesis concludes and presents preliminary results on extensions to the Searn algorithm
in more complex settings.

The breakdown of this thesis makes it inappropriate to discuss “prior work” in a single
chapter. Instead, I have adopted the following strategy. Chapter 2 will discuss background
information on machine learning and structured prediction. It will not discuss any prior
work on any of the applications I consider. Subsequent chapters will include their own
prior work sections at the end. This organization allows easy referencing between my
work and that of others. It also enables more discussion of the pros and cons of my
approach in comparison to prior work.

The chapters in this thesis are organized as follows:

Part I: Machine Learning

Chapter 2 introduces relevant background from machine learning. The chapter intro-
duces the relevant statistical learning theory necessary to understand the remainder
of the thesis as well as the notion of loss-driven learning. This chapter also formally
defines the notion of a learning reduction that I make heavy use of in the develop-
ment of my own algorithm, Searn. It concludes with a discussion of prior work on
the structured prediction task.

Chapter 3 introduces my algorithm, Searn, for solving structured prediction prob-
lems. This chapter also contains the bulk of the theoretical results pertaining to
Searn and describes the connections between structured prediction and reinforce-
ment learning. Chapter 3 concludes with a comparison of Searn to prior work in
structured prediction.

Part II: Applications

Chapter 4 begins a sequence of three chapters on experimental results with Searn.
This chapter focuses on the simplest problem: sequence labeling. I describe how
to apply Searn to this problem and present results on three data sets: syntactic
chunking, named entity recognition in Spanish and handwriting recognition. I then
present the results of applying Searn to a joint sequence labeling task: simultane-
ous part of speech tagging and syntactic chunking.

Chapter 5 describes the application of Searn to the entity detection and tracking prob-
lem introduced in Section 1.2. In this chapter, I discuss both the algorithmic and
search issues involved in the EDT task as well as the task of developing useful
features for this problem. I report the effects of various knowledge sources on
the EDT problem: lexical, syntactic, semantic and knowledge-based, and find that
knowledge-based features prove incredibly useful for this problem.
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Chapter 6 applies Searn to a set of summarization models. These models truly stretch
the applicability of generic structured prediction techniques and show that it is
possible to optimize a structured prediction model against a weaker variety of loss
function than I consider in the other experimental setups.

Part III: Future Work

Chapter 7 describes two extensions to Searn. The first is a methodology for apply-
ing Searn to hidden variable models, such as those commonly used in machine
translation. The second is a technique for improving Searn-learned models on the
basis of weak user feedback. I present proof-of-concept experimental results in word
alignment and summarization. I then conclude the thesis by summarizing the im-
portant contributions and looking forward to future research, both theoretical and
practical.
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Chapter 2

Machine Learning

One goal of this thesis is to develop a learning framework that is able to learn to predict
complex, structured outputs with highly interdependent features, as typified by the entity
detection and tracking problem. This chapter presents the background material necessary
to understand my contributions in this area.

There are three primary sections in this chapter. In Section 2.1, I introduce back-
ground information in non-structured statistical learning. This second focuses on three
popular algorithms for binary classification: the perceptron, logistic regression and the
support vector machine. In Section 2.2, I introduce the current state-of-the-art structured
prediction techniques. These techniques can be seen as extensions of the previously de-
scribed binary classification algorithms to the structured prediction domain. Finally, in
Section 2.3, I describe the technique of learning reductions. Reductions are a technique
for transforming a hard learning problem into an easier learning problem and form the
theoretical basis of my algorithm for solving structured prediction problems.

2.1 Binary Classification

Supervised learning aims to learn a function f that maps an input x ∈ X to an output
y ∈ Y. The standard supervised learning setting typically focuses on binary classification
(Y = {−1, +1}), multiclass classification (Y = {1, . . . , K} for a small K), or regression
(Y = R). For an example of binary classification, we might want to predict whether
or not it will be sunny tomorrow on the basis of past weather data. Such a decision
will be made on the basis of a feature function, denoted Φ : X → F , where F is the
“feature space.” In our example, Φ(x) might encode information such as temperature,
atmospheric pressure and time of year. Typically, F = R

D, the D-dimension real vector
space.

The general hypothesis class we consider is that of linear classifiers (i.e., biased hyper-
planes)1. That is, we parameterize our binary classification function by a weight vector
w ∈ R

D and a scalar b ∈ R. The classification function is given in Eq (2.1).

1The restriction to linear classifiers may seem overly restrictive (for instance, linear classifiers cannot
correctly solve the “XOR problem”). However, by employing kernels, one can convert most of the algo-
rithms I describe in this chapter into non-linear classifiers. The use of kernels is a bit outside the scope
of this thesis, so I do not discuss them further. See (Burges, 1998; Daumé III, 2004a; Christianini and
Shawe-Taylor, 2000) for further discussion.
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f(x; w, b) = w
>Φ(x) + b =

∑

d

wdΦ(x)d + b (2.1)

The classification decision is according to the sign of f . That is, if f(x) > 0 then we
decide the class is +1 and if f(x) < 0 then we decide the class is −1.

Once we have restricted ourselves to the linear hypothesis class, the learning problem
becomes that of finding “good” values of w and b. These values are learned on the basis
of a finite data sample 〈xn, yn〉1:N of training examples. Exactly how we define “good”
determines the algorithm we choose to use. Nevertheless, all three algorithms we discuss
have the same basic flavor for how they define “good.” Each involves two components:

1. Fitting the data. The algorithms attempt to find parameters that correctly classify
the training data, or at least make few mistakes. Moreover, the algorithms disprefer
weight vectors that over-classify the negative examples: yf(x) = −2 is worse than
yf(x) = −1 for an incorrectly classified example.

2. Not over-fitting the training data. Often by having some very large components in
the weight vector, our learned function is able to trivially predict the training data,
but does not generalize to new data. By requiring that the weight vector is small
(or sparse), we aid generalization ability.

2.1.1 Perceptron

The perceptron algorithm (Rosenblatt, 1958) learns a weight vector w and bias b in an
online fashion. That is, it processes the training set one example at a time. At each step,
it ensures that the current parameters correctly classify the training example. If so, it
proceeds to the next example. If not, it moves the weight vector and bias closer to the
current example. The algorithm repeatedly loops over the training data until either no
further updates are made or a maximum iteration count has been reached.

It can be shown that, if possible, the perceptron algorithm will eventually converge to
a setting of parameter values that correctly classifies the entire data set. Unfortunately,
this often leads to poor generalization. Improved generalization ability is available by
using weight averaging. Weight averaging is accomplished by modifying the standard
perceptron algorithm so that the final weights returned are the average of all weight
vectors encountered during the algorithm. In can be shown that weight averaging leads
to a more stable solution with better expected generalization (Freund and Shapire, 1999;
Gentile, 2001).

Averaging can be näıvely accomplished by maintaining two sets of parameters: the
current parameters and the averaged parameters. At each step of the algorithm (after
processing a single example), the current parameters are added to the averaged parame-
ters. Once the algorithm completes, the averaged parameters are divided by the number
of steps and returned as the final parameters.

Unfortunately, this näıve algorithm is terribly inefficient. First, we would like to avoid
adding the entire weight vector to the averaged vector in each iteration. We would only
like to make the addition when an update is made. Moreover, the vectors Φ(x) are often
sparse. This makes the update to the true weight vector efficient, but the sum of the
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Algorithm AveragedPerceptron(x1:N , y1:N , I)

1: w0 ← 〈0, . . . , 0〉, b0 ← 0
2: wa ← 〈0, . . . , 0〉, ba ← 0
3: c← 1
4: for i = 1 . . . I do
5: for n = 1 . . . N do
6: if yn

[

w0
>Φ(xn) + b0

]

≤ 0 then
7: w0 ← w0 + ynΦ(xn), b0 ← b0 + yn

8: wa ← wa + cynΦ(xn), ba ← ba + cyn

9: end if
10: c← c + 1
11: end for
12: end for
13: return (w0 − wa/c, b0 − ba/c)

Figure 2.1: The averaged perceptron learning algorithm.

weights and the averaged weights inefficient. It turns out we can get around both of these
problems very straightforwardly.

An efficient implementation of the averaged perceptron training algorithm is shown in
Figure 2.1. In step (1), the running weight vector and bias are initialized to zero. In step
(2), the averaged weight vector and bias are initialized to zero. In step (3), the averaging
count is initialized to 1. The algorithm then runs for I iterations. In each iteration,
the algorithm processes each example. Step (6) checks to see if the algorithm currently
classifies example 〈xn, yn〉 incorrectly. The example is classified incorrectly exactly when
yn and the current prediction w0

>Φ(xn) + b0 have a different sign: when their product
is negative.

If the current example 〈xn, yn〉 is misclassified by the current parameters (w0, b0),
then in step (7), the algorithm moves w0 closer to ynΦ(xn) and b0 closer to yn. In step
(8), the averaged weights are updated in the same way, but where the averaging count
c is used as a multiplicative factor. Finally, in step (10), regardless of whether an error
was made or not, c is incremented.

After the algorithm has finished, the final parameters are returned. The non-averaged
version would simply return w0 and b0. To accomplish averaging, the algorithm instead
returns (w0−wa/c) and (b0− ba/c). It is straightforward to show that this accomplishes
weight averaging as desired.

2.1.2 Logistic Regression

Logistic regression is a second popular binary classification method. It is identical to
binary maximum entropy classification in practice, though the derivation of the two for-
mulations differs. Logistic regression assumes that the conditional probability of the class
y is proportional to exp f(x). This is given in Eq (2.2).
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p (y | x; w, b) =
1

Zx;w,b
exp

[

y
(

w
>Φ(x) + b

)]

(2.2)

=
1

1 + exp
[

− 2y
(

w
>Φ(x) + b

)]

Like the perceptron, the classification decision is based on the sign of f(x).

To train a logistic regression classifier, one attempts to find parameters w and b that
maximize the likelihood (probability) of the training data. Thus, logistic regression is
a maximum likelihood classifier. This accomplishes our goal of performing well on the
training data, but does not explicitly seek small weights. To accomplish the latter, a
prior is placed over the weights. This is typically taken to be a zero-mean, spherical
Gaussian with variance σ2 (Chen and Rosenfeld, 1999), though alternative priors have
been employed (Goodman, 2004). This transforms logistic regression from a maximum
likelihood method to a maximum a posteriori method, where the posterior distribution
over weights given the training data is given in Eq (2.3).

p
(

w, b | 〈xn, yn〉1:N ; σ2
)

∝ p
(

w | σ2
)

N
∏

n=1

p (yn | xn; w, b) (2.3)

∝ exp

[

− 1

σ2
||w||2

] N
∏

n=1

1

1 + exp
[

− 2yn

(

w
>Φ(xn) + b

)]

Originally, this maximization problem was solved using iterative scaling methods
(Berger, 1997). Unfortunately, these techniques are quite inefficient in practice. Re-
cently, gradient-based techniques such as conjugate gradient (Press et al., 2002) and
limited-memory BFGS (Nash and Nocedal, 1991; Averick and Moré, 1994) have enjoyed
great success (Minka, 2001; Malouf, 2002; Minka, 2003; Daumé III, 2004b). Both of these
techniques rely on the ability to compute the gradient of Eq (2.3) with respect to w and
b. This is easier if, instead of maximizing the posterior, we instead maximize the log
posterior. The log posterior is given in Eq (2.4) and its gradient in given in Eq (2.5),
where C is independent of w and b.

log p (w, b) = − 1

σ2
||w||2 −

N
∑

n=1

log
[

1 + exp
[

− 2yn

(

w
>Φ(xn) + b

)]

]

+ C (2.4)

∂

∂w

log p (w, b) = − 1

2σ2
w + 2

N
∑

n=1

ynΦ(xn)

[

1

1 + exp [−2ynw
>Φ(xn)]

]

(2.5)

In the binary classification case, one can explicitly compute the second order informa-
tion required to directly apply a conjugate gradient method. For multiclass classification,
this is not possible, and an approximate Hessian method such as limited memory BFGS
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must be employed. See (Minka, 2003) for more information about the derivation of these
results and (Daumé III, 2004b) for a description of an efficient implementation.

2.1.3 Support Vector Machines

Support vector machines provide an alternative formulation of the learning problem in
terms of a formal optimization problem (Boser, Guyon, and Vapnik, 1992). SVMs are
based on the large margin framework. This framework states that if we have to choose
between two settings of parameters, we should choose the one that maximizes the distance
between the corresponding hyperplane and the nearest data point on either side. Such
large margin solutions are intuitively appealing because they are robust against small
changes in the data. Theoretically, it can be shown that maintaining a large margin will
lead to good generalization (Vapnik, 1979; Vapnik, 1995). Furthermore, it is straight-
forward to show that the parameters have a large margin if and only if ||w|| is small
(independent of b).

For a moment we restrict ourselves to the simplified problem of separable training
data (with a margin of 1)2. That is, there exists setting of the parameters so that we
can perfectly classify the training data with a large margin. This leads to the simplest
formulation of the SVM, given in Eq (2.6).

minimizew,b
1

2
||w||2 (2.6)

subject to yn

[

w
>Φ(xn) + b

]

≥ 1 ∀n

The SVM optimization problem states that we wish to find a weight vector w and
bias b with minimum norm. The constraints state that, for each data point 〈xn, yn〉 the
given parameters over-classify this example. That is, the example would be correctly
classified if the product in the constraints were always greater than zero, but here we
require the stronger condition that it be greater than one.

In many cases this optimization problem will be infeasible: there will not exist a
parameter setting that obeys the constraints. Moreover, even for separable data, we often
do not wish to force the algorithm to actually achieve perfect classification performance
on the training data (for instance, if there are any errors on the data). This leads to
the soft-margin formulation of the SVM. The idea in the soft-margin SVM is that we no
longer require all examples to be over-classified with a margin of one. However, for every
example that does not obey this constraint, we measure how far we would have to “push”
that example in order to achieve the desired hard-margin constraint. This measurement
is known as the “slack” of the corresponding example. This leads to the formulation
shown in Eq (2.7).

minimizew,b
1

2
||w||2 + C

N
∑

n=1

ξn (2.7)

2The margin is simply the smallest value of ynf(xn) across the entire data set.
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subject to yn

[

w
>Φ(xn) + b

]

≥ 1− ξn ∀n
ξn ≥ 0

In the soft-margin formulation, our objective function includes two components. The
first (small norm) forces the SVM to find a solution that is likely to generalize well. The
second (small sum of slack variables ξ) forces the SVM to classify most of the training data
correctly. The hyper-parameter C ≥ 0 controls the trade-off between fitting the training
data and finding a small weight vector. As C tends toward infinity, the soft-margin SVM
approaches the hard-margin SVM and all the training data must be correctly classified.
As C tends toward zero, the SVM cares less and less about correctly classifying the
training data and simply seeks a small weight vector.

In the constraints of the soft-margin SVM formulation, we now require that each
example be over-classified by 1 − ξn rather than 1. If parameters can be found that
classifies each example with a margin of 1, then the ξns can be made to all be zero.
However, for inseparable data, these slack variables account for the training error. While
there are as many constraints as data points, it can be shown by the Karush-Kuhn-Tucker
conditions (Bertsekas, Nedic, and Daglar, 2003) that at the optimal weight vector, only
very few of these are “active.” That is, at the optimal values of w and b, yn

[

w
>Φ(xn)+b

]

is strictly greater than one and are hence inactive for many n. The examples n that are
active are called the support vectors because those are the only examples that have any
affect on the classification decision. In particular, w can be written as a linear combination
of the support vectors, ignoring the rest of the training data.

There are many algorithms for solving the SVM problem. The most straightforward
is to treat it directly as a quadratic programming problem (Bertsekas, Nedic, and Daglar,
2003) and apply a generic optimization package, such as CPLEX (CPLEX Optimization,
1994). However, the very special form of the optimization problem (namely the sparsity of
the constraints) has lead to the development of specialized algorithms, such as sequential
minimal optimization (Platt, 1999). More recently, however, it has been recognized that
simple gradient-based techniques can lead to highly efficient solutions to the SVM problem
(Wen, Edelman, and Gorsich, 2003; Ratliff, Bagnell, and Zinkevich, 2006).

2.1.4 Generalization Bounds

One of the most fundamental theoretical questions about classification problems is the
question of generalization: how well will we do on “test data.” This question is usually
answered in the form “with high probability, the error we observe on unseen test data
will be at most the error we incur on the training data plus a regularization term.”
The regularization term typically makes use of quantities such as the number of training
examples, the number of features, and the “size” (or complexity) of the weight vector.

In order to prove statements of this form, one needs to make assumptions about the
relationship between the training data and the test data. In particular, we have to assume
that the training data is representative of the test data. This is formalized as saying that
there is a fixed, but unknown, probability distribution D and the training data and test
data are both sampled from D. This is the identicality assumption. The second assump-
tion is to assure us that our training data is representative of the entire distribution D.
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We assume that the training data is drawn independently from D. Formally, if we knew
D, then, conditional on D, the points in the training data would be independent. When
the training data obeys these properties, we say that it is independently and identically
distributed from D (or, “i.i.d.” from D). The i.i.d. assumption underlies the majority of
the theoretical work on generalization bounds.

For concreteness, consider the support vector machine. Denote by Lemp(D, f) the
average empirical loss (Eq (2.8)) over the training data D for the classifier f . Denote by
Lexp(D, f) the expected loss (Eq (2.9)) of the classifier f over data drawn i.i.d. from a
distribution D.

Lemp(D, f) =
1

N

N
∑

n=1

1(yn 6= f(xn)) (2.8)

Lexp(D, f) = E(x,y)∼D

[

1(y 6= f(x))
]

(2.9)

A (comparatively) simple generalization bound for the SVM takes the form of The-
orem 2.1. Note that, depending on stronger assumptions, stronger bounds are available
(Bartlett and Shawe-Taylor, 1999; Zhang, 2002; McAllester, 2003; McAllester, 2004;
Langford, 2005). This one was chosen because it is comparatively easier to state.

Theorem 2.1 (SVM Generalization; (Langford and Shawe-Taylor, 2002)). For
all averaging classifiers c with normalized weights w, for all error rates ε > 0 and all
margins γ > 0, Eq (2.10) holds with probability greater than 1− δ over training sets S of
size m drawn i.i.d. from a distribution D.

KL (êγ(c) + ε || e(c)− ε) ≤ 1

m

[

2 ln
m + 1

δ
− ln F̄

(

F̄−1(e)

γ

)]

(2.10)

where F̄ (x) is the tail probability of a zero-mean, unit variance Gaussian, eγ(c) is the
expected margin-error rate for the classifier c with respect to a margin γ and e(c) is the
error of the classifier c (i.e., e(c) = e0(c)).

This theorem works as follows. We are comparing the empirical error (on the lhs of
the KL) of the classifier to the true error (on the rhs of the KL), modulo a fixed error
rate ε. We desire the divergence between these error distributions to be small because
this would imply that our estimated empirical error is close to what we expect to see
on test data. The theorem states that this divergence is bounded by a term that scales
roughly as 1/m, where m is the number of training points, and roughly as ln F̄ (1/γ),
where γ is the margin. In particular, as m increases, the bound becomes tighter. Also, as
γ increases, the bound becomes tighter. Thus, to achieve good generalization, one wants
a lot of data and a large margin.

The important things to note about Theorem 2.1 are the following. First, it assumes
that the training data is i.i.d. (this is the standard assumption). Second, the bound
improves as the weight vector shrinks (i.e., as the margin increases). Third, the bound
improves as the number of training examples grows. This provides some theoretical
justification for the SVM formulation.
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Figure 2.2: Plot of several convex approximations to the zero-one loss function.

2.1.5 Summary of Learners

The learners described in this section—the Perceptron, maximum entropy models and
support vector machines—are effective solutions to the binary classification problem.
In general, support vector machines tend to outperform the perceptron and maximum
entropy models empirically. However, they do so at a non-trivial computational cost.
The perceptron is highly efficient and often reaches a reasonable solution even after only
one pass through the training data. Maximum entropy models, while slightly slower, still
operate at a speed of roughly O(N). SVMs, contrastively, often scale at least as O(N 2)
if not O(N3). For large data sets this can render them intractable.

Despite these differences, these three models are not so dissimilar. In fact, when
optimized using sub-gradient methods (Zinkevich, 2003; Ratliff, Bagnell, and Zinkevich,
2006), SVMs are exactly the result of adding regularization and margins to the percep-
tron (Collobert and Bengio, 2004). In particular, the “update” term in the perceptron
happens not only when a mistake is made, but when an example is not over-classified.
Furthermore, weights are shrunk at every iteration toward zero according to the regular-
ization parameter C. On the other hand, the perceptron can also be seen as a stochastic
approximation to the gradient for maximum entropy models when the log normalizing
constant is approximated with a max rather than a sum (Collins, 2002).

These similarities can be seen more clearly by examining the exact loss function
optimized by the three learners. In Figure 2.2, I have plotted these (and other) loss
functions. In this graph, I plot the prediction yf(x) along the x-axis and the loss along
the y-axis. The most basic loss, 0/1 loss, is the desired loss. It is a step-function that
is zero when yf(x) > 0 and one otherwise. This is the loss function that the perceptron
optimizes. In general, however, it is a difficult function to optimize: neither is it convex
nor differentiable. The other functions we consider are convex upper bounds on the 0/1
loss. For instance, the log loss, which is optimized by maximum entropy models, touches
the 0/1 loss at the corner and slowly falls to asymptote at the axis as yf(x) → ∞.
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The hinge loss (also called the margin loss), which is optimized by the SVM, is a ramp
function that has slope −1 when yf(x) < 1 and is zero otherwise. Two other loss
functions—squared loss and exponential loss—are also shown; these are used in other
learning algorithms such as neural networks (Bishop, 1995) and boosting (Schapire, 2003;
Lebanon and Lafferty, 2002). Each of these loss functions has different advantages and
disadvantages; these are too deep and off-topic to attempt to discuss in the context of
this thesis. The interested reader is directed to (Bartlett, Jordan, and McAuliffe, 2005)
for more in-depth discussions.

2.2 Structured Prediction

The vast majority of prediction algorithms, such as those described in the previous sec-
tion, are built to solve prediction problems whose outputs are “simple.” Here, “simple”
is intended to include binary classification, multiclass classification and regression. (I
note in passing that some of the aforementioned algorithms are more easily adapted to
multiclass classification and/or regression than others.) In contrast, the problems I am
interested in solving are “complex.” The family of generic techniques for solving such
“complex” problems are generally known as structured prediction algorithms or structured
learning algorithms. To date, there are essentially four state-of-the-art structured predic-
tion algorithms (with minor variations), each of which I briefly describe in this section.
However, before describing these algorithms in detail, it is worthwhile to attempt to for-
malize what is meant by “simple,” “complex” and “structure.” It turns out that defining
these concepts is remarkably difficult.

2.2.1 Defining Structured Prediction

Structured prediction is a very slippery concept. In fact, of all the primary prior work that
proposes solutions to the structured prediction problem, none explicitly defines the prob-
lem (McCallum, Freitag, and Pereira, 2000; Lafferty, McCallum, and Pereira, 2001; Pun-
yakanok and Roth, 2001; Collins, 2002; Taskar, Guestrin, and Koller, 2003; McAllester,
Collins, and Pereira, 2004; Tsochantaridis et al., 2005). In all cases, the problem is ex-
plained and motivated purely by means of examples. These examples include the following
problems:

• Sequence labeling: given an input sequence, produce a label sequence of equal
length. Each label is drawn from a small finite set. This problem is typified in NLP
by part-of-speech tagging.

• Parsing: given an input sequence, build a tree whose yield (leaves) are the elements
in the sequence and whose structure obeys some grammar. This problem is typified
in NLP by syntactic parsing.

• Collective classification: given a graph defined by a set of vertices and edges, pro-
duce a labeling of the vertices. This problem is typified by relation learning prob-
lems, such as labeling web pages given link information.
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• Bipartite matching: given a bipartite graph, find the best possible matching. This
problem is typified by (a simplified version of) word alignment in NLP and protein
structure prediction in computational biology.

There are many other problems in NLP that do not receive as much attention from
the machine learning community, but seem to also fall under the heading of structured
prediction. These include entity detection and tracking, automatic document summariza-
tion, machine translation and question answering (among others). Generalizing over these
examples leads us to a partial definition of structured prediction, which I call Condition
1, below.

Condition 1. In a structured prediction problem, output elements y ∈ Y decompose into
variable length vectors over a finite set. That is, there is a finite M ∈ N such that each
y ∈ Y can be identified with at least one vector vy ∈ MTy , where Ty is the length of the
vector.

This condition is likely to be deemed acceptable by most researchers who are active
in the structured prediction community. However, there is a question as to whether it
is a sufficient condition. In particular, it includes many problems that would not really
be considered structured prediction (binary classification, multitask learning (Caruana,
1997), etc.). This leads to a second condition that hinges on the form of the loss function.
It is natural to desire that the loss function does not decompose over the vector represen-
tations. After all, if it does decompose over the representation, then one can simply solve
the problem by predicting each vector component independently. However, it is always
possible to construct some vector encoding over which the loss function decomposes3 This
means that we must therefore make this conditions stronger, and require that there is no
polynomially sized encoding of the vector over which the loss function decomposes.

Condition 2. In a structured prediction problem, the loss function does not decompose
over the vectors vy for y ∈ Y. In particular, l(x, y, ŷ) is not invariant under identical
permutations of y and ŷ. Formally, we must make this stronger: there is no vector
mapping y 7→ vy such that the loss function decomposes, for which |vy| is polynomial in
|y|.

Condition 2 successfully excludes problems like binary classification and multitask
learning from consideration as structured prediction problems. Importantly, it excludes
standard classification problems and multitask learning. Interestingly, it also excludes
problems such as sequence labeling under Hamming loss (discussed further in Chap-
ter 4). Hamming loss (per-node loss) on sequence labeling problems is invariant over
permutations. This condition also excludes collective classification under zero/one loss
on the nodes. In fact, it excludes virtually any problem that one could reasonably hope
to solve by using a collection of independent classifiers (Punyakanok and Roth, 2001).

3To do so, we encode the true vector in a very long vector by specifying the exact location of each
label using products of prime numbers. Specifically, for each label k, one considers the positions i1, . . . , iZ
in which k appears in the vector. The encoded vector will contain p

i1
1 p

i2
2 · · · p

iZ

Z copies of element k,
where p1, . . . is an enumeration of the primes. Given this encoding it is always possible to reconstruct
the original vector, yet the loss function will decompose.
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The important aspect of Condition 2 is that it hinges on the notion of the loss function
rather than the features. For instance, one can argue that even when sequence labeling is
performed under Hamming loss, there is still important structural information. That is,
we “know” that by including structural features (such as Markov features), we can solve
most sequence labeling tasks better.4 The difference between these two perspectives is
that under Condition 2 the loss dictates the structure, while otherwise the features dictate
the structure. Since when the world hands us a problem to solve, it hands us the loss but
not the features (the features are part of the solution), it is most appropriate to define
the structured prediction problem only in terms of the loss.

Current generic structured prediction algorithms are not built to solve problems under
which Condition 2 holds. In order to facilitate discussion, I will refer to problems for
which both conditions hold as “structured prediction problem” and those for which only
Condition 1 holds as “decomposable structured prediction problems.” I note in passing
that this terminology is nonstandard.

2.2.2 Feature Spaces for Structured Prediction

Structured prediction algorithms make use of an extended notion of feature function. For
structured prediction, the feature function takes as input both the original input x ∈ X
and a hypothesized output y ∈ Y. The value Φ(x, y) will again be a vector in Euclidean
space, but which now depends on the output. In particular, in part of speech tagging, an
element in Φ(x, y) might be the number of times the word “the” appears and is labeled
as a determiner and the next word is labeled as a noun.

All structured prediction algorithms described in this Chapter are only applicable
when Φ admits efficient search. In particular, after learning a weight vector w, one will
need to find the best output for a given input. This is the “argmax problem” defined in
Eq (2.11).

ŷ = arg max
y∈Y

w
>Φ(x, y) (2.11)

This problem will not be tractable in the general case. However, for very specific Y and
very specific Φ, one can employ dynamic programming algorithms or integer programming
algorithms to find efficient solutions. In particular, if Φ decomposes over the vector
representation of Y such that no feature depends on elements of y that are more than
k positions away, then the Viterbi algorithm can be used to solve the argmax problem
in time O(Mk) (where M is the number of possible labels, formally from Condition 1).
This case includes standard sequence labeling problems under the Markov assumption as
well as parsing problems under the context-free assumption.

2.2.3 Structured Perceptron

The structured perceptron is an extension of the standard perceptron (Section 2.1.1) to
structured prediction (Collins, 2002). Importantly, it is only applicable to the problem

4This is actually not necessarily the case; see Section 4.2 for an extended discussion.
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Algorithm AveragedStructuredPerceptron(x1:N , y1:N , I)

1: w0 ← 〈0, . . . , 0〉
2: wa ← 〈0, . . . , 0〉
3: c← 1
4: for i = 1 . . . I do
5: for n = 1 . . . N do
6: ŷn ← arg maxy∈Y w0

>Φ(xn, yn)
7: if yn 6= ŷn then
8: w0 ← w0 + Φ(xn, yn)− Φ(xn, ŷn)
9: wa ← wa + cΦ(xn, yn)− cΦ(xn, ŷn)

10: end if
11: c← c + 1
12: end for
13: end for
14: return w0 −wa/c

Figure 2.3: The averaged structured perceptron learning algorithm.

of 0/1 loss over Y: that is, l(x, y, ŷ) = 1(y 6= ŷ). As such, it only solves decomposable
structured prediction problems (0/1 loss is trivially invariant under permutations). Like
all the algorithms we consider, the structured perceptron will be parameterized by a
weight vector w. The structured perceptron makes one significant assumption: that
Eq (2.11) can be solved efficiently.

Based on the argmax assumption, the structured perceptron constructs the perceptron
in nearly an identical manner as for the binary case. While looping through the training
data, whenever the predicted ŷn for xn differs from yn, we update the weights according
to Eq (2.12).

w ← w + Φ(xn, yn)− Φ(xn, ŷn) (2.12)

This weight update serves to bring the vector closer to the true output and further
from the incorrect output. As in the standard perceptron, this often leads to a learned
model that generalizes poorly. As before, one solution to this problem is weight averaging.
This behaves identically to the averaged binary perceptron and the full training algorithm
is depicted in Figure 2.3.

The behavior of the structured perceptron and the standard perceptron are virtually
identically. The major changes are as follow. First, there is no bias b. For structured
problems, a bias is irrelevant: it will increase the score of all hypothetical outputs by the
same amount. The next major difference is in step (6): the best scoring output ŷn for
the input xn is computed using the arg max. After checking for an error, the weights are
updated, according to Eq (2.12), in steps (8) and (9).
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2.2.4 Incremental Perceptron

The incremental perceptron (Collins and Roark, 2004) is a variant on the structured per-
ceptron that deals with the issue that the arg max in step 6 may not be analytically
available. The idea of the incremental perceptron (which I build on significantly in Chap-
ter 3) is to replace the arg max with a beam search algorithm. Thus, step 6 becomes
“ŷn ← BeamSearch(xn, w0)”. The key observation is that it is often possible to detect
in the process of executing search whether it is possible for the resulting output to ever
be correct. For instance, in sequence labeling, as soon as the beam search algorithm has
made an error, we can detect it without completing the search (for standard loss function
and search algorithms). The incremental perceptron aborts the search algorithm as soon
as it has detected that an error has been made. Empirical results in the parsing domain
have shown that this simple modification leads to much faster convergence and superior
results.

2.2.5 Maximum Entropy Markov Models

The maximum entropy Markov model (MEMM) framework, pioneered by McCallum,
Freitag, and Pereira (2000) is a straightforward application of maximum entropy models
(aka logistic regression models, see Section 2.1.2) to sequence labeling problems. For
those familiar with the hidden Markov model framework, MEMMs can be seen as HMMs
where the conditional “observation given state” probabilities are replaced with direct
“state given observation” probabilities (this leads to the ability to include large numbers
of overlapping, non-independent features). In particular, a first-order MEMM places the
conditional distribution shown in Eq (2.13) on the nth label, yn, given the full input x,
the previous label, yn−1, a feature function Φ and a weight vector w.

p (yn | x, yn−1; w) =
1

Zx,yn−1;w
exp

[

w
>Φ(x, yn, yn−1)

]

(2.13)

Zx,yn−1;w =
∑

y′∈Yn

exp
[

w
>Φ(x, y′, yn−1)

]

The MEMM is trained by tracing along the true output sequences for the training
data and using the true yn−1 to generate training examples. This process simply produces
multiclass classification examples, equal in number to the number of labels in all of the
training data. Based on this data, the weight vector w is learned exactly as in standard
maximum entropy models.

At prediction time, one applies the Viterbi algorithm, as in the case of the structured
perceptron, to solve the “arg max” problem. Importantly, since the true values for yn−1

are not known, one uses the predicted values of yn−1 for making the prediction about
the nth value (albeit, in the context of Viterbi search). As I will discuss in depth in
Section 3.4.5, this fact can lead to severely suboptimal results.
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2.2.6 Conditional Random Fields

While successful in many practical examples, maximum entropy Markov models suf-
fer from two severe problems: the “label-bias problem” (both Lafferty, McCallum, and
Pereira (2001) and Bottou (1991) discuss the label-bias problem in depth) and a lim-
itation to sequence labeling. Conditional random fields are an alternative extension of
logistic regression (maximum entropy models) to structured outputs (Lafferty, McCallum,
and Pereira, 2001). Similar to the structured perceptron, a conditional random field does
not employ a loss function. It optimizes a log-loss approximation to the 0/1 loss over
the entire output. In this sense, it is also a solution only to a decomposable structured
prediction problems.

The actual formulation of conditional random fields is identical to that for multi-
class maximum entropy models. The CRF assumes a feature function Φ(x, y) that maps
input/output pairs to vectors in Euclidean space, and uses a Gibbs distribution parame-
terized by w to model the probability, Eq (2.14).

p (y | x; w) =
1

Zx;w
exp

[

w
>Φ(x, y)

]

(2.14)

Zx;w =
∑

y′∈Y

exp
[

w
>Φ(x, y′)

]

(2.15)

Here, Zx,w (known as the “partition function”) is the sum of responses of all incorrect
outputs. Typically, this set will be too large to sum over explicitly. However, if Φ is
chosen properly and if Y is a simple linear-chain structure, this sum can be computed
using dynamic programming techniques (Lafferty, McCallum, and Pereira, 2001; Sha and
Pereira, 2002). In particular, Φ must be chosen to obey the Markov property: for a
Markov length of l, no feature can depend on elements of y that are more than l positions
apart. The algorithm associated with the sum is nearly identical to the forward-backward
algorithm for hidden Markov models (Baum and Petrie, 1966) and scales as O(NK l),
where N is the length of the sequence, K is the number of labels and l is the “Markov
order” used by Φ.

Just as in maximum entropy models, the weights w are regularized by a Gaussian
prior and the log posterior distribution over weights is as in Eq (2.16).

log p
(

w | D; σ2
)

= − 1

σ2
||w||2+

N
∑

n=1



w
>Φ(xn, yn)− log

∑

y′∈Y

exp
[

w
>Φ(xn, y′)

]



 (2.16)

Finding optimal weights can be solved either using iterative scaling methods (Lafferty,
McCallum, and Pereira, 2001) or more complex optimization strategies such as BFGS
(Sha and Pereira, 2002; Daumé III, 2004b) or stochastic meta-descent (Schraudolph and
Graepel, 2003; Vishwanathan et al., 2006). In practice, the latter two are much more
efficient. In practice, in order for full CRF training to be practical, we must be able to
efficiently compute both the arg max from Eq (2.11) and the log normalization constant
from Eq (2.17).
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log Zx;w = log
∑

y′∈Y

exp
[

w
>Φ(x, y′)

]

(2.17)

So long as we can compute these two quantities, CRFs are a reasonable choice for
solving the decomposable structured prediction problem under the log-loss approximation
to 0/1 loss over Y. See (Sutton and McCallum, 2006) and (Wallach, 2004) for in-depth
introductions to conditional random fields.

2.2.7 Maximum Margin Markov Networks

The Maximum Margin Markov Network (M3N) formalism considers the structured pre-
diction problem as a quadratic programming problem (Taskar, Guestrin, and Koller, 2003;
Taskar et al., 2005), following the formalism for the support vector machine for binary
classification. Recall from Section 2.1.3 that the SVM formulation sought a weight vector
with small norm (for good generalization) and which achieved a margin of at least one on
all training examples (modulo the slack variables). The M3N formalism extends this to
structured outputs under a given loss function l by requiring that the difference in score
between the true output y and any incorrect output ŷ is at least the loss l(x, y, ŷ) (modulo
slack variables). That is: the M3N framework scales the margin to be proportional to
the loss. This is given formally in Eq (2.18).

minimizew

1

2
||w||2 + C

N
∑

n=1

∑

ŷ

ξn,ŷ (2.18)

subject to w
>Φ(xn, yn)−w

>Φ(xn, ŷ) ≥ l(xn, yn, ŷ)− ξn,ŷ ∀n, ∀ŷ ∈ Y
ξn,ŷ ≥ 0 ∀n, ∀y′ ∈ Y

One immediate observation about the M3N formulation is that there are too many
constraints. That is, the first set of constraints is instantiated for every training instance
n and for every incorrect output ŷ. Fortunately, under restrictions on Y and Φ, it is
possible to replace this exponential number of constraints with a polynomial number. In
particular, for the special case of sequence labeling under Hamming loss (a decomposable
structured prediction problem), one needs only one constraint per element in an example.

In the original development of the M3N formalism (Taskar, Guestrin, and Koller,
2003), this optimization problem was solved using an active set formulation similar to
the SMO algorithm (Platt, 1999). Subsequently, more efficient optimization techniques
have been proposed, including ones based on the exponentiated gradient method (Bartlett
et al., 2004), the dual extra-gradient method (Taskar et al., 2005) and the sub-gradient
method (Bagnell, Ratliff, and Zinkevich, 2006). Of these, the last two appear to be the
most efficient. In order to employ these methods in practice, one must be able to compute
both the arg max from Eq (2.11) as well as a so-called “loss-augmented search” problem
given in Eq (2.19).

S(x, y) = arg max
ŷ∈Y

w
>Φ(x, ŷ) + l(x, y, ŷ) (2.19)

22



In order for this to be efficiently computable, the loss function is forced to decompose
over the structure. This implies that M3Ns are only (efficiently) applicable to decompos-
able structured prediction problems. Nevertheless, they are applicable to a strictly wider
set of problems than CRFs for two reasons. First, M3Ns do not have a requirement that
the log normalization constant (Eq (2.17)) be efficiently computable. This alone allows
optimization in M3Ns for problems that would be F#P-complete for CRFs (Taskar et
al., 2005). Second, M3Ns can be applied to loss functions other than 0/1 loss over the
entire sequence. However, in practice, they are essentially only applicable to a hinge-loss
approximation to Hamming loss over Y.

2.2.8 SVMs for Interdependent and Structured Outputs

The Support Vector Machines for Interdependent and Structured Outputs (SVMstruct)
formalism (Tsochantaridis et al., 2005) is strikingly similar to the M3N formalism. The
difference lies in the fact that the M3N framework scales the margin by the loss, while the
SVMstruct formalism scales the slack variables by the loss. The quadratic programming
problem for the SVMstruct is given as:

minimizew

1

2
||w||2 + C

∑

n

∑

ŷ

ξn,ŷ (2.20)

subject to w
>Φ(xn, yn)−w

>Φ(xn, y′) ≥ 1− ξn,y′

l(xn, yn, y′)
∀n, ∀y′ ∈ Y

ξn,y′ ≥ 0 ∀n, ∀y′ ∈ Y

The objective function is the same in both cases; the only difference is found in the first
constraint. Dividing the slack variable by the corresponding loss is akin to multiplying the
slack variables in the objective function by the loss (in the division, we assume 0/0 = 0).
Though, to date, the SVMstruct framework has generated less interest than the M3N
framework, the formalism seems more appropriate. It is much more intuitive to scale the
training error (slack variables) by the loss, rather than to scale the margin by the loss.
This advantage is also claimed by the original creators of the SVMstruct framework, in
which they suggest that their formalism is superior to the M3N formalism because the
latter will cause the system to work very hard to separate very lossful hypotheses, even
if they are not at all confusable for the truth.

In addition to the difference in loss-scaling, the optimization techniques employed
by the two techniques differ significantly. In particular, the decomposition of the loss
function that enabled us to remove the exponentially many constraints does not work
in the SVMstruct framework. Instead, Tsochantaridis et al. (2005) advocate an iterative
optimization procedure, in which constraints are added in an “as needed” basis. It can
be shown that this will converge to a solution within ε of the optimal in a polynomial
number of steps.

The primary disadvantage to the SVMstruct framework is that it is often difficult to op-
timize. However, unlike the other three frameworks described thus far, the SVMstruct does
not assume that the loss function decomposes over the structure. However, in exchange
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for this generality, the loss-augmented search problem for them SVMstruct framework be-
comes more difficult. In particular, while the M3N loss-augmented search (Eq (2.19)) as-
sumes decomposition in order to remain tractable, the loss-augmented search (Eq (2.21))
for the SVMstruct framework is often never tractable.

S(x, y) = arg max
ŷ∈Y

[

w
>Φ(x, ŷ)

]

l(x, y, ŷ) (2.21)

The difference between the two requirements is that in the M3N case, the loss appears
as an additive term, while in the SVMstruct case, the loss appears as a multiplicative term.
In practice, for many problems, this renders the search problem intractable.

2.2.9 Reranking

Reranking is an increasingly popular technique for solving complex natural language
processing problems. The motivation behind reranking is the following. We have access
to a method for solving a problem, but it is difficult or impossible to modify this method
to include features we want or to optimize the loss function we want. Assuming that
this method can produce a “n-best” list of outputs (instead of just outputting what it
thinks is the single best output, it produces many best outputs), we can attempt to
build a second model for picking an output from this n-best list. Since we are only ever
considering a constant-sized list, we can incorporate features that would otherwise render
the argmax problem intractable. Moreover, we can often optimize a reranker to a loss
function closer to the one we care about (in fact, we can do so using techniques described
in Section 2.3). Based on these advantages, reranking has been applied in a variety of
NLP problems including parsing (Collins, 2000; Charniak and Johnson, 2005), machine
translation (Och, 2003; Shen, Sarkar, and Och, 2004), question answering (Ravichandran,
Hovy, and Och, 2003), semantic role labeling (Toutanova, Haghighi, and Manning, 2005),
and other tasks. In fact, according to the ACL anthology5, in 2005 there were 33 papers
that include the term “reranking,” compared to ten in 2003 and virtually none before
2000.

Reranking is an attractive technique because it enables one to quickly experiment
with new features and new loss functions. There are, however, several drawbacks to the
approach. Some of these are enumerated below:

1. Close ties to original model. In order to rerank, one must have a model whose
output can be reranked. The best the reranking model can do is limited by the
original model: if it cannot find the best output in an n-best list, then neither will
the reranker. This is especially concerning for problems with enormous Y, such as
machine translation.

2. Segmentation of training data. One should typically not train a reranker over data
that the original model was trained on. This means that one must set aside a held-
out data set for training the reranker, leading to less data on which one can train
the original model.

5http://acl.ldc.upenn.edu
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Structured Perceptron
√ √ √ √

Conditional Random Field
√ √

–
Max-margin Markov Network

√ √ √

SVM for Structured Outputs
√ √ √

Reranking
√ √ √ √

– –

Table 2.1: Summary of structured prediction algorithms.

3. Inefficiency. At runtime, one must run two separate systems. Moreover, producing
n-best lists is often significantly more complex than producing a single output (for
example, in parsing (Huang and Chiang, 2005)).

4. Multiple approximations. It is, in general, advisable to avoid multiple approxima-
tions to a single learning problem. Reranking, by definition, solves what should be
one problem in two separate steps.

Despite these drawbacks, reranking is a very powerful technique for exploring novel
features.

2.2.10 Summary of Learners

All of the structured prediction algorithms I have described share a common property:
they are extensions of standard binary classification techniques to (decomposable) struc-
tured prediction problems. Each also requires that the arg max problem (Eq (2.11)) be
efficiently solvable. Each has various advantages and disadvantages, summarized below.

Structured perceptron. Advantages: Efficient, minimal requirements on Y and Φ,
easy to implement. Disadvantages: only optimizes 0/1 loss over Y, somewhat poor
generalization.

Conditional random fields. Advantages: Provides probabilistic outputs, strong con-
nections to graphical models (Pearl, 2000; Smyth, Heckerman, and Jordan, 2001),
good generalization. Disadvantages: only optimizes log-0/1-loss over Y, slow, par-
tition function (Eq (2.17)) is often intractable.

Max-margin Markov Nets. Advantages: Can optimize both 0/1 loss over Y and
hinge-Hamming loss, implements large-margin principle, can be tractable when
CRFs are not. Disadvantages: very slow, limited to Hamming loss.
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SVMs for Structured Outputs. Advantages: more loss functions applicable, imple-
ments large-margin principle, produces sparse solutions. Disadvantages: slow,
often-intractable loss-augmented search procedure (Eq (2.21).

The important aspects of each technique are summarized in Table 2.1. This table
evaluates each technique on four dimensions. First, and perhaps most importantly, is the
type of loss function the algorithm can handle. This is broken down into 0/1 loss, Ham-
ming loss and arbitrary (non-decomposable) loss. Next, the techniques are distinguished
by their ability to handle complex features. In particular, all four structured prediction
algorithms require that one be able to solve the argmax problem; the CRF requires that
the corresponding sum also be tractable. Lastly, the algorithms are compared based on
whether they are efficient and easy to implement.

As we can see from this table, none of the structured prediction techniques can handle
arbitrary losses, and all require that the argmax be efficiently computable. The CRF
additional requires that the sum be efficiently computable. (Though it is not shown on
the table, both the M3N and the SVMstruct also require that a loss-augmented argmax
be efficiently solvable.) Of the algorithms, only the structured perceptron is efficient (the
others require expensive belief propagation/forward-backward computations) and easy to
implement.

Also shown on this table, though not explicitly a structured prediction technique, is
a row for a reranking algorithm. Reranking is popular precisely because it does enable
one to (approximately) handle any loss function and use arbitrary features. However, as
discussed in Section 2.2.9, there are several disadvantages to the reranking approach for
solving general problems.

The four models described in this section do not form an exhaustive list of all ap-
proaches to the structured prediction problem (nor even the sequence labeling problem),
though they do form a largely representative list; see also (Punyakanok and Roth, 2001;
Weston et al., 2002; McAllester, Collins, and Pereira, 2004; Altun, Hofmann, and Smola,
2004; McDonald, Crammer, and Pereira, 2004) for a variety of other approaches.

2.3 Learning Reductions

Binary classification under 0/1 loss (Section 2.1) is an attractive area of study for many
reasons, including simplicity and generality. However, there are many prediction problems
that are not 0/1 loss binary problems. For instance, the structured prediction problems
discussed in Section 2.2 are not binary classification problems. The techniques described
in that section were extensions of standard binary classification techniques to the harder
setting of structured prediction. The framework of machine learning reductions (Beygelz-
imer et al., 2005) gives us an alternative methodology for relating one prediction problem
to another. (Reductions have also been called “plug in classification techniques” (PICTs);
see (James and Hastie, 1998) for an example.) The idea of a reduction is to map a hard
problem to a simple problem, solve the simple problem, then map the solution to the
simple problem into a solution to the hard problem.
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2.3.1 Reduction Theory

A reduction has three components: the sample mapping, the hypothesis mapping and
a bound. The sample mapping tells us how to create data sets for the simple problem
based on data sets for the hard problem. The hypothesis mapping tells us how to convert
a solution to the simple problem into a solution to the hard problem. The bound tells us
that if we do well on the simple problem, we are guaranteed to also do well on the hard
problem.

There are two varieties of bounds that are worth consideration: error-limiting bounds
and regret-limiting bounds. In the case of an error-limiting reduction, the theoretical
guarantee states that a low error on the simple problem implies a low error on the
hard problem. For a regret-limiting reduction, the bound states that low regret 6 on the
simple problem implies low regret on the hard problem. One particularly nice thing about
reductions is that the bounds compose (Beygelzimer et al., 2005). In particular, if one
can reduce problem A to problem B (with bound g) and problem B to problem C (with
bound h), then the composed reduction A ◦B has bound g ◦ h.

In this section, I survey several prediction problems and corresponding reductions.

2.3.2 Importance Weighted Binary Classification

The importance weighted binary classification (IWBC) problem is a simple extension to
the 0/1 binary classification problem. The difference is that in IWBC, each example has
a corresponding weight. These weights reflect the importance of a correct classification.
Formally, an IWBC is a distribution D over X × 2×R

+. Each sample is a triple (x, y, i),
where i is the importance weight. A solution is still a binary classifier h : X → 2, but the
goal is to minimize the expected weight loss, given in Eq (2.22).

L(D, h) = E(x,y,i)∼D

[

i 1(y 6= h(x))
]

(2.22)

The “Costing” algorithm (Zadrozny, Langford, and Abe, 2003) is designed to reduce
IWBC to binary classification. Costing functions by creating C parallel binary classifi-
cation data sets based on a single IWBC data set. Each of these binary data sets are
generated by sampling from the IWBC data set with probability proportional to the
weights. Thus, examples with high weights are likely to be in most of the binary classifi-
cation sets, and examples with low weights are likely to be in few (if any). After learning
C different binary classifiers, one makes an importance weighted prediction by majority
vote over the binary classifiers. Costing obeys the error bound given in Theorem 2.2.

Theorem 2.2 (Costing error efficiency; (Zadrozny, Langford, and Abe, 2003)).
For all importance weighted problems D, if the base classifiers have error rate ε, then
Costing has loss rate at most ε E(x,y,i)∼D[i].

The proof of Theorem 2.2 is a straightforward application of the definitions. Intu-
itively, Costing works because examples with high weights are placed in most of the

6The regret of a hypothesis h on a problem D is the difference in error between using h and using the
best possible classifier. Formally, R(D, h) = L(D, h) − minh∗L(D, h∗).
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buckets and examples with low weights are placed in few buckets. This means that, on
average, the classifiers will perform better on the high weight examples. The expectation
in the statement of Theorem 2.2 simply shows that the performance of the Costing re-
duction scales with the weights. In particular, if we multiply all weights by 100, then the
weighted loss (Eq (2.22)) must also increase by a factor of 100.

2.3.3 Cost-sensitive Classification

Cost-sensitive classification is the natural extension of importance weighted binary clas-
sification to a multiclass setting. For a K-class task, our problem is a distribution D over
X × (R+)K . A sample (x, c) from D is an input x and a cost vector c of length K. c

encodes the costs of predictions. We learn a hypothesis h : X → K and the cost incurred
for a prediction is ch(x). In 0/1 multiclass classification, with a single “correct” class y
and K − 1 incorrect classes, c is structured so that cy = 0 and cy′ = 1 for all other y′.
The goal is to find a classifier h that minimizes the expected cost-sensitive loss, given in
Eq (2.23).

L(D, h) = E(x,c)∼D

[

ch(x)

]

(2.23)

There are several reductions for solving this problem. The easiest is the “Weighted
All Pairs” (WAP) reduction (Beygelzimer et al., 2005). WAP reduces cost-sensitive clas-
sification to importance weighted binary classification. Given a cost-sensitive example
(x, c), WAP generates

(

K
2

)

binary classification problems, one for each pair of classes
0 ≤ i < j < K. The binary class is the class with lower cost and the importance weight
is given by |vj − vi|, with vi =

∫ ci

0 dt 1/L(t), where L(t) is the number of classes with
cost at most t. WAP obeys the error bound given in Theorem 2.3.

Theorem 2.3 (WAP error efficiency; (Beygelzimer et al., 2005)). For all cost-
sensitive problems D, if the base importance weighted classifier has loss rate c, then WAP
has loss rate at most 2c.

Beygelzimer et al. (2005) provide a proof of Theorem 2.3. Intuitively, the WAP reduc-
tion works for the same reason that any all-pairs algorithm works: the binary classifiers
learn to separate the good classes from the bad classes. The actual weights used by WAP
are somewhat unusual, but obey two properties. First, if i is the class with zero cost,
then the weight of the problem when i is paired with j is simply the cost of j. This
makes intuitive sense. When i has greater than zero cost, then the weight associated
with separating i from j is reduced from the difference to something smaller. This means
the classifiers work harder to separate the best class from all the incorrect classes than
to separate the incorrect classes from each other.

2.4 Discussion and Conclusions

This chapter has focused on three areas of machine learning: binary classification, struc-
tured prediction and learning reductions. The purpose of this thesis is to present a novel
algorithm for structured prediction that improves on the state of the art. In particu-
lar, in the next chapter, I describe a novel algorithm, Searn, for solving the structured
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prediction problem. In particular, Searn is designed to be “optimal” in the sense of
the summary from Table 2.1. That is, it is be amenable to any loss function, does not
require an efficient solution to the argmax problem, is efficient and is easy to implement.
However, unlike reranking, it also comes with theoretical guarantees and none of the
disadvantages of reranking described in Section 2.2.9. Searn is developed by casting
structured prediction in the language of reductions (Section 2.3); in particular, it reduces
structured prediction to cost-sensitive classification (Section 2.3.3). At that point, one can
apply algorithms like weighted-all-pairs and costing to turn it into a binary classification
problem. Then, any binary classifier (Section 2.1) may be applied.
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Chapter 3

Search-based Structured Prediction

As discussed in Section 2.2, structured prediction tasks involve the production of com-
plex outputs, such as label sequences, parse trees, translations, etc. I described four
popular algorithms for solving the structured prediction problem: the structured percep-
tron (Collins, 2002), conditional random fields (Lafferty, McCallum, and Pereira, 2001),
max-margin Markov networks (Taskar et al., 2005) and SVMs for structured outputs
(Tsochantaridis et al., 2005). As discussed previously, these methods all make assump-
tions of conditional independence which are known to not hold. Moreover, they all enforce
unnatural limitations on the loss: namely, that it decomposes over the structure.

In this chapter, I describe Searn (for “search + learn”). Searn is an algorithm for
solving general structured prediction problems: that is, ones under which the features and
loss do not necessarily decompose. While Searn is applicable to this restricted setting
(and achieves impressive empirical performance; see Chapter 4), the true contribution
of this algorithm is that it is the first generic structured prediction technique that is
applicable to problems with non-decomposable losses. This is particularly important in
real-world natural language processing problems because nearly all relevant loss functions
do not decompose over any reasonable definition of structure. For example, the following
metrics do not decompose naturally: the Bleu and NIST metrics for machine translation
(Papineni et al., 2002; Doddington, 2004b); the Rouge metrics for summarization (Lin
and Hovy, 2003); the ACE metric for information extraction (Doddington, 2004a); and
many others. That is not to say techniques do not exist for solving these problems:
simply, there is no generic, well-founded technique for solving them.

One way of thinking about Searn that may be most natural to researchers with a
background in NLP is to first think about what problem-specific algorithms do. For
example, consider machine translation (a problem not tackled in this thesis, though see
Section 7.4 for a discussion). After a significant amount of training of various probability
models and weighting factors, the algorithm used to perform the actual translation at
test time is comparatively straightforward: it is a left-to-right beam search over English
outputs.1 An English translation is produced in an incremental fashion by adding words

1At least, this is the case for standard phrase-based (Koehn, Och, and Marcu, 2003) and alignment-
template models (Och, 1999). More recent research into syntactic machine translation typically uses
extensions of parsing algorithms for producing the output (Yamada and Knight, 2002; Melamed, 2004;
Chiang, 2005). For simplicity, I will focus on the phrase-based framework.
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or phrases on to the end of a given translation. This search process is performed to
optimize some score: a function of the learned probability models and weights.

In fact, this approach is not limited to machine translation. Many complex problem
in NLP are solved in a similar fashion: summarization, information extraction, parsing,
etc. The problem that plagues all of these techniques is that the arg max problem from
Eq (2.11)—finding the structured output that maximizes some score over features—is
either formally intractable or simply too computationally demanding (for instance, pars-
ing is technically polynomial, but O(N 3) is too expensive in practice, so complex beam
and pruning methods are employed (Bikel, 2004)). The theoretical difficulty here is that
although one might have employed machine learning techniques for which some perfor-
mance guarantees are available (see Section 2.1.4), once one throws an ad hoc search
algorithm on top, these guarantees disappear.2

Searn, viewed from the perspective on NLP algorithms, can be seen as a generaliza-
tion and simplification of this common practice. The key idea, developed initially by the
incremental perceptron (see Section 2.2.4 and Collins and Roark (2004)) and the LaSO

framework (Daumé III and Marcu, 2005c), is to attempt to integrate learning with search.
The two previous approaches achieve this integration by modifying a standard learning
procedure to be aware of an underlying search algorithm. Searn actually removes search
from the prediction process altogether by directly learning a classifier to make incremental
decisions. The prediction phase of a model learned with Searn does not employ search
but rather runs this classifier. In addition to gained simplicity, Searn can handle more
general features and loss functions and is theoretically sound.

3.1 Contributions and Methodology

What is a principled method for interleaving learning and search? To answer this, I
analyze the desirable trait: good learning implies good search. This can be analyzed by
casting Searn as a learning reduction (Beygelzimer et al., 2005) that maps structured
prediction to classification (see Section 2.3). I optimize Searn so that good performance
in binary classification implies good performance on the original problem.

The precise Searn algorithm is inspired by research in reinforcement learning. Con-
sidering structured prediction in a reinforcement learning setting, I am able to lever-
age previous reductions for reinforcement learning to simpler problems (Langford and
Zadrozny, 2003; Langford and Zadrozny, 2005). Viewed as a reinforcement learning al-
gorithm, Searn operates in an environment with oracle access to an optimal policy and
gradually learns its own policy using an iterative technique motivated by Conservative
Policy Iteration (Kakade and Langford, 2002) forming subproblems as defined by Lang-
ford and Zadrozny (2005). Relative to these algorithms, Searn works from an optimal

2There is some related evidence from research on approximate inference in graphical models that
roughly shows that the same approximate algorithm should be used for both training and prediction
(Wainwright, 2006). In fact, even if possible to perform prediction exactly, if one trains using the same

approximate algorithm, one should test using an approximate algorithm. This echoes some previous
results I have showing roughly the same thing, but for a simple search-based sequence labeling algorithm
(Daumé III and Marcu, 2005c).
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policy rather than a restart distribution (Kakade and Langford, 2002) and can achieve
computational speedups (Langford and Zadrozny, 2005) in practice.

The outcome of this work is an empirically effective algorithm for solving any struc-
tured prediction problem. In fact, I have a powerful set of algorithms because Searn

works using any classifier (SVM, decision tree, Bayes net, etc...) as a subroutine. This
simple and general algorithm turns out to have excellent state-of-the-art performance and
achieves significant computational speedups over competing techniques. For instance, the
complexity of training Searn for sequence labeling scales as O(TLk) where T is the se-
quence length, L is the number of labels and k is the Markov order on the features. M3Ns
and CRFs for this problem scale exponentially in k: O(TLk) in general. Finally, Searn

is simple to implement.

3.2 Generalized Problem Definition

In Section 2.2.1, I defined two flavors of the structured prediction problem, specifically
with respect to whether the loss function decomposes or not. In this chapter, I will focus
exclusively on the harder care, where there is no decomposition. It turns out that it is
convenient to actually consider a generalization of the problem defined previously. Recall
that, before, the structured prediction problem was given by a fixed loss function and a
distribution D over inputs x ∈ X and correct outputs y ∈ Y. This is akin to the noise-free
(or “oracle”) setting in binary classification (Valiant, 1994; Kearns and Vazirani, 1997).
I generalize this notion to a noisy setting by letting D be a distribution over pairs (x, c),
where the input remains the same (x ∈ X ), but where c is a cost vector so that for any
output y ∈ Y, cy is the loss associated with predicting y. It is clear that any problem
definable in the previous setting is definable in this generalization. This notion is stated
formally in Definition 3.1.

Definition 3.1 (Structured Prediction). A structured prediction problem D is a cost-
sensitive classification problem where Y has structure: elements y ∈ Y decompose into
variable-length vectors (y1, y2, . . . , yT ).3 D is a distribution over inputs x ∈ X and cost
vectors c, where |c| is a variable in 2T .

As a simple example, consider a parsing problem under F1 loss. In this case, D is a
distribution over (x, c) where x is an input sequence and for all trees y with |x|-many
leaves, cy is the F1 loss of y when compared to the “true” output.

The goal of structured prediction is to find a function h : X → Y that minimizes the
loss given in Eq (3.1).

L(D, h) = E(x,c)∼D

{

ch(x)

}

(3.1)

The technique I describe is based on the view that a vector y ∈ Y can be produced by
predicting each component (y1, . . . yN ) in turn, allowing for dependent predictions. This
is important for coping with general loss functions. For a data set (x1, c1), . . . , (xN , cN )

3Treating y as a vector is simply a useful encoding; we are not interested only in sequence labeling

problems. See Condition 1 in Section 2.2.1.
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of structured prediction examples, I write Tn for the length of the longest search path on
example n, and Tmax = maxn Tn.

3.3 Search-based Structured Prediction

I analyze the structured prediction problem by considering what happens at test time.
Here, a search algorithm produces a full structured output by making a sequence of
decisions at each time step. In standard structured techniques, this process of search
aims to find a structure that maximizes a scoring function. I ignore this aspect of search
and simply treat it as an iterative process that produces an output. In this view, the
goal of search-based structured prediction is to find a function h that guides us through
search. More formally, given an input x ∈ X and a state s in a search space S, we want
a function h(x, s) that tells us the next state to go to (or, more generally, what action to
take). This forms the basis of a policy.

Definition 3.2 (Policy). A policy h is a distribution over actions conditioned on an
input x and state s.

Under this view of structured prediction, we have transformed the structured predic-
tion problem into a classification problem. The classifier’s job is to learn to predict best
actions. The remaining question is how to train such a classifier, given the fact that the
search spaces are typically too large to explore exhaustively.

3.4 Training

Searn operates in an iterative fashion. At each iteration it uses a known policy to
create new cost-sensitive classification examples4. These examples are essentially the
classification decisions that a policy would need to get right in order to perform search
well. These are used to learn a new classifier which gives rise to a new policy. This new
policy is interpolated with the old policy and the process repeats.

3.4.1 Cost-sensitive Examples

In the training phase, Searn uses a given policy π to construct cost-sensitive multiclass
classification examples from which a new classifier is learned. These classification exam-
ples are created by running the given policy π over the training data. This generates
one path per structured training example. Searn creates a single cost-sensitive example
for each state on each path. The classes associated with each example are the available
actions (the set of all possible next states). The only difficulty lies in specifying the costs.

Formally, we want the cost associated with taking an action that leads to state s to be
the regret associated with this action, given our current policy. That is, we search under
the input xn using π and beginning at state s to find a complete output y. Under the

4A k-class cost-sensitive example is given by an input X and a vector of costs c ∈ (R+)k. Each class
i has an associated cost ci and the goal is a function h : X 7→ i that minimizes the expected value of ci.
See Section 2.3.3.
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overall structured prediction loss function, this gives us a loss of cy. Of all the possible
actions, one, a′, will have the minimum expected loss. The cost `π

a for an action a is the
difference in loss between taking action a and taking the optimal action a′; see Eq (3.2).

`π
a = Ey∼search(xn,π,a)cy −min

a′

`π
a′ (3.2)

The complexity of the computation associated with Eq (3.2) is problem dependent.
There are (at least) three possible ways to compute it.

1. Monte-Carlo sampling: one draws many paths according to h beginning at s′ and
average over the costs.

2. Single Monte-Carlo sampling: draw a single path and use the corresponding cost,
with tied randomization as per Pegasus (Ng and Jordan, 2000).

3. Optimal approximation: it is often possible to efficiently compute the loss associated
with following an optimal policy from a given state; when h is sufficiently good, this
may serve as a useful and fast approximation. (This is also the approach described
by Langford and Zadrozny (2005).)

The quality of the learned solution depends on the quality of the approximation of
the loss. Obtaining Monte-Carlo samples is likely the best solution, but in many cases
the optimal approximation is sufficient. An empirical comparison of these options is
performed in Section 4.5.

3.4.2 Optimal Policy

Efficient implementation of Searn requires an efficient optimal policy π∗ for the train-
ing data (it would make no sense on the test data: our problem would be solved). The
implications of this assumption are discussed in detail in Section 3.6.1, but note in pass-
ing that it is strictly weaker than the assumptions made by other structured prediction
techniques. The optimal policy is a policy that, for a given state, input and output
(structured prediction cost vector) always predicts the best action to take:

Definition 3.3 (Optimal Policy). For x, c as in Def 3.1, and a node s = 〈y1, . . . , yt in
the search space, the optimal policy π∗(x, c, y) is arg minyt+1 minyt+2,...,yT

c〈y1,...,yT 〉. That
is, π∗ chooses the action (i.e., value for yt+1) that minimizes the corresponding cost,
assuming that all future decisions are also made optimally.

Searn uses the optimal policy to initialize the iterative process, and attempts to
migrate toward a completely learned policy that will generalize well.

3.4.3 Algorithm

The Searn algorithm is shown in Figure 3.1. As input, the algorithm takes a data set,
an optimal policy π∗ and a multiclass learner L. Searn operates iteratively, maintaining
a current policy hypothesis h(I) at each iteration I. This hypothesis is initialized to the
optimal policy (step 1).
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Algorithm Searn(SSP, π∗, Learn)

1: Initialize policy h(0) ← π∗

2: for I = 1 . . . do
3: Initialize the set of cost-sensitive examples SI ← ∅
4: for n = 1 . . . N do
5: Compute path under the current policy 〈s1, . . . , sTn

〉 ← pth(xn, h(I−1), ∅)
6: for t = 1 . . . Tn do
7: Compute features Φ = Φ(xn, st) for input xn and state st

8: Initialize a cost vector c = 〈〉
9: for each possible action a do

10: Compute the cost of a: `a = `h(I−1)

st⊕a (Eq (3.2))
11: Append ` to c: c← c⊕ `a

12: end for
13: Add cost-sensitive example (Φ, c) to SI

14: end for
15: end for
16: Learn a classifier on SI : h′ ← Learn(SI)
17: Interpolate: h(I) ← βh′ + (1− β)h(I−1)

18: end for
19: return h(last) without π∗

Figure 3.1: Complete Searn Algorithm

The algorithm then loops for a number of iterations. In each iteration, it creates
a (multi-)set of cost-sensitive examples, SI . These are created by looping over each
structured example (step 4). For each example (step 5), the current policy h(I−1) is used
to produce an full output, represented as a sequence of state s1:Tn

. Each state in the
sequence is used to create a single cost-sensitive example (steps 6-14).

The first task in creating a cost-sensitive example is to compute the associated feature
vector, performed in step 7. This feature vector is based on the structured input xn and
the current state st (the creation of the feature vectors is discussed in more detail in
Section 3.4.6). We are now faced with the task of creating the cost vector c for the cost-
sensitive classification examples. This vector will contain one entry for every possible
action a that can be executed from state st. For each action a, we compute the expected
loss associated with the state st⊕ a: the state arrived at assuming we take action a (step
10). This loss is then appended to the cost vector (step 11).

Once all example have been processed, Searn has created a large set of cost-sensitive
examples SI . These are fed into any cost-sensitive classification algorithm, Learn, to pro-
duce a new classifier h′ (step 16). In step 17, Searn combines the newly learned classifier
h′ with the current classifier h(I−1) to produce a new classifier h(I). This combination is
performed through linear interpolation with interpolation parameter β. (The choice of
β is discussed in Section 3.5.) Finally, after all iterations have been completed, Searn

returns the final policy after removing π∗ (step 19).
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Figure 3.2: Example structured prediction problem for motivating the Searn algorithm.

3.4.4 Simple Example

As an example to demonstrate how Searn functions, consider the very simple search
problem displayed in Figure 3.2. This can be thought of as a simple sequence labeling
problem, where the sequence length is two (the “A” is given) and the correct output,
shown in bold, is “A B E.” This sequence achieves a loss of zero. Two other outputs (“A
C F” and “A B D”) achieve a loss of one, while the sequence “A C G” incurs a loss of one
hundred. Along each edge is shown a feature vector corresponding to this edge. These
vectors have no intuitive meaning, but serve to elucidate some benefits of Searn. In this
problem, there are three features, each of which is binary, and only one of which is active
for any given edge.

Before considering what Searn does on this problem, consider what a maximum
entropy Markov model (Section 2.2.5) would do. The MEMM would use this example
to construct two binary classification problems. For the “B/C” choice, this would lead
to a positive example (corresponding to taking the “upper path”) with feature vectors
as shown in the figure. Then, a second example would be generated for the “D/E”
choice. This would be a negative example with corresponding feature vectors.5 After
training a vanilla maximum entropy model on this data, one would obtain a weight
vector w = 〈0, 0,−1〉.

Now, consider what happens when we execute search using this policy. In the first
step, we must decide between “B” and “C”. Given the learned weight vector, both have
value 0, so the algorithm must randomly choose between them. Suppose it chooses the
upper path. Then, at the choice between “D” and “E”, it will choose “E”, yielding a loss

5In the MegaM (http://hal3.name/megam/) “explicit, fval” notation, these examples would be writ-
ten:

0 F1 1 # F1 1
1 F2 1 # F3 1
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of zero. However, suppose it chooses the lower path on the first step. Then, at the choice
between “F” and “G” it will choose “G”, yielding a loss of 100. This leaves us with an
expected loss of 50.5. This is far from optimal. Consider, for instance, the weight vector
〈0, 1, 0〉. With this weight vector, the first choice is again random, but the “D/E” choice
will lead to “D” and the “F/G” choice will lead to “F”. This yields an expected loss of
1, significantly better than the learned weight vector.

The reason that this example fails is because we have only trained our weight vector
on parts of the search space (“A” and “B”) that the optimal path covers. This means
that if we fall off this path at any point, we can do (almost) arbitrarily badly (this is
formalized shortly in Theorem 3.4).

Now, consider executing Searn on this example. In the first step, Searn will generate
an identical data set to the MEMM, on which the same weight vector will be learned.
Searn will then iterate, with a current policy equal to an interpolation of the optimal
policy and the learned policy given by the weight vector. In the second iteration of
Searn, two things can happen: (1) the learned policy is called at the first step and it
chooses “C” randomly, or (2) either the optimal policy or the learned policy is called
at the first step and it chooses “B”. In case (2), we will regenerate the same examples,
relearn a new weight vector and re-interpolate (note that the more times this happens,
the less likely it is that in the first step we call the optimal policy).

The interesting case is case (1). Here, just as before, we generate the first “B/C”
choice example. However, when we follow the current policy, it chooses to go to node “C”
instead of node “B”. This means that instead of generating the second binary example as
a choice between “D” and “E”, instead we generate a second binary example as a choice
between “F” and “G”. Moreover, the second example is weighted much more strongly6.
Now, when we learn a classifier off this data, we obtain a weight vector 〈0.01, 1, 0〉, quite
close to the hypothetical weight vector considered previously.

Consider the behavior of the algorithm with the newly learned weight vector. At the
first step, the algorithm will select between “B” and “C” randomly. If it chooses “B”,
then it will choose “D” at the next step (score of 1 versus 0) and incur a loss of 1. If it
chose “C” at the first step, it will choose “F” in the second step (score of 1 versus 0) and
incur a loss of 1. This leads to an expected loss of 1, which is, in fact, the best one can
do on this simple example.

3.4.5 Comparison to Local Classifier Techniques

There are essentially two varieties of local classification techniques applied to structured
prediction problems. The first variety is typified by the work of Punyakanok and Roth
(2001) and Punyakanok et al. (2005). In this variety, the structure in the problem
is ignored all together, and a single classifier is trained to predict each element in the
output vector independently. In some cases, a post-hoc search or optimization algorithm
is applied on top to ensure some consistency in the output (Punyakanok, Roth, and
Yih, 2005). The second variety is typified by maximum entropy Markov models (see

6One can simulate this in MegaM format as:
0 F1 1 # F1 1
0 $$$WEIGHT 100 F2 1 # F3 1
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Section 2.2.5), though the basic idea has also been applied more generally to SVMs (Kudo
and Matsumoto, 2001; Kudo and Matsumoto, 2003; Giménez and Màrquez, 2004). In
this variety, the elements in the prediction vector are made sequentially, with the nth
element conditional on outputs n− k . . . n− 1 for a kth order model.

One way of contrasting Searn-based learning to more typical algorithms such as
CRFs and M3Ns is based on considering how they share information across a structure.
The standard approach to sharing information is based on using the Viterbi algorithm (or,
more generally, any exact dynamic programming algorithm) at test time. By applying
such an search algorithm, one allows information to be shared across the entire structure,
effectively “trading off” one decision for another. Searn takes an alternative approach.
Instead of using a complex search algorithm at test time, it attempts to share information
at training time. In particular, by training the classifier using a loss based on both past
experience and future expectations, the training attempts to integrate this information
during learning. One approach is not necessarily better than the other; they are simply
different ways to accomplish the same goal.

In the purely independent classifier setting, both training and testing proceed in the
obvious way. Since the classifiers make one decision completely independently of any
other decision, training makes us only of the input. This makes training the classifiers
incredibly straightforward, and also makes prediction easy. In fact, running Searn with
Φ(x, y) independent of all but yn for the n prediction would yield exactly this framework
(note that there would be no reason to iterate Searn in this case). While this renders the
independent classifiers approach attractive, it is also significantly weaker, in the sense that
one cannot define complex features over the output space. This has not thus far hindered
its applicability to problems like sequence labeling (Punyakanok and Roth, 2001), parsing
and semantic role labeling (Punyakanok, Roth, and Yih, 2005), but does seem to be an
overly strict condition. This also limits the approach to Hamming loss.

Searn is more similar to the MEMM-esque prediction setting. The key difference
is that in the MEMM, the nth prediction is being made on the basis of the k previous
predictions. However, these predictions are noisy, which potentially leads to the subop-
timal performance described in the previous section. The essential problem is that the
models have been trained assuming that they make all previous predictions correctly, but
when applied in practice, they only have predictions about previous labels. It turns out
that this can cause them to perform nearly arbitrarily badly. This is formalized in the
following theorem, due to Matti Kääriäinen.

Theorem 3.4 (Kääriäinen (2006)). There exists a distribution D over first order
binary Markov problems such that training a binary classifier based on true previous
predictions to an error rate of ε leads to a Hamming loss given in Eq (3.3), where T is
the length of the sequence.

T

2
− 1− (1− 2ε)T+1

4ε
+

1

2
≈ T

2
(3.3)

Where the approximation is true for small ε or large T .

The proof of this theorem is not provided, but I will give a brief intuition for the
construction. Before that, notice that a Hamming loss of T/2 for a binary Markov
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problem is the same error rate as random guessing. The construction that leads to this
error rate can be thought of as an XOR plus image recognition problem. The inputs are
images of zeros and ones. The correct label for the nth label is the XOR of the number
drawn in the nth image and the label at position n − 1. A bit of thought can convince
one that even a low error rate ε can lead to a high Hamming loss, essentially because
once the algorithm errs, it cannot recover.7

One can construct similarly difficult problems for structured prediction distributions
with different structure, such as larger order Markov models, models whose features can
look at larger windows of the input, and multiclass cases. One might be led to believe
that the result above is due to the fact that the classifier is trained on the true output,
rather than its own predictions. In a sense, this is correct (and, in the same sense, this is
exactly the problem Searn is attempting to solve). However, even if the model is trained
in a single pass, using its previous outputs as input, one can obtain essentially the same
error bound as shown in Theorem 3.4, where the algorithm will perform arbitrarily badly.

3.4.6 Feature Computations

In step 7 of the Searn algorithm (Figure 3.1), one is required to compute a feature vector
Φ on the basis of the structured input xn and a given state st. In theory, this step is
arbitrary. However, the performance of the underlying classification algorithm (and hence
the induced structured prediction algorithm) hinges on a good choice for these features.

In general, I adhere to the following recipe for creating the feature vectors. At state
st, there will be K possible actions, a1, . . . , aK . I treat Φ as the concatenation of K
subvectors, one for each choice of the next action. Then, I compute features as one
normally would for the position in xn represented by st and “pair” each of these with
each action ak to produce the final feature vector.

This is perhaps best understood with an example. Consider the part-of-speech tagging
problem under a left-to-right greedy search (see also Chapter 4). Suppose our input is
the sentence “The man ate a big sandwich with pickles .” and suppose that our current
state correspond to a tagging of the first five words as “Det Noun Verb Det Adj”. We
wish to produce the part-of-speech tag for the word “sandwich.” Suppose there are five
possibilities: Det, Noun, Verb, Adj and Prep.

The first step will be to compute a standard feature vector associated with the current
position in the sentence (the 6th word). This will typically include features such as the
current word (“sandwich”) its prefix and suffix (“san” and “ich”), and similar features
computed within a window (eg., that “a” is two positions to the left and “with” is one
position to the right). Additionally, we often wish to consider some structured features,
such as “the previous word is tagged Adj” and “the second previous word is tagged Det.”
This will lead to a canonical “base” feature vector φ.

To compute the full feature vector Φ, I take the cross product between 〈1, φ〉 and the
set of possible actions (the “1” is a bias term). In this case, suppose that |φ| = S; then,

7While this construction may seem somewhat artificial, it is not unlike the common case of coreference
resolution in the literature domain, where an conversation exchange occurs between two parties, with the
speaker alternating and not explicitly given. Discerning who is speaking at the nth line requires that one
has not erred previously.

39



with K actions, the length of Φ will be K × (S + 1). In particular, we will take every
feature f in φ and create K action/feature pairs “the feature f is active and the current
action is ak.” Taking all of these features together gives us the full feature vector Φ.

Assuming one uses the weighted-all-pairs algorithm (Section 2.3.3) to reduce the mul-
ticlass problem to a binary classification problem, it is often possible (and beneficial) to
only give the underlying classifier a subset of the features when making binary decisions.
For instance, after applying weighted-all-pairs, one will be solving classification problems
that look like “does action Det look better than action Verb?” For answering such ques-
tions, it is reasonable to only feed the algorithm the features associated with the Det and
Verb options. Doing so both increases computation efficiency and significantly reduces
the burden on the underlying classifier.

3.5 Theoretical Analysis

Searn functions by slowly moving away from the optimal policy toward a fully learned
policy. As such, each iteration of Searn will degrade the current policy. The main
convergence theorem states that the learned policy is never much worse than the starting
(optimal) policy. To simplify notation, I write T for Tmax.

It is important in the analysis to refer explicitly to the error of the classifiers learned
during the process of Searn. I write Searn(D, h) to denote the distribution over clas-
sification problems generated by running Searn with policy h on distribution D. For a
learned classifier h′, I write `CS

h (h′) to denote the loss of this classifier on the distribution
Searn(D, h).

The following lemma (proof in appendix) is useful:

Lemma 3.5 (Policy Degradation). Given a policy h with loss L(D, h), apply a single
iteration of Searn to learn a classifier h′ with cost-sensitive loss `CS

h (h′). Create a
new policy hnew by interpolation with parameter β ∈ (0, T/2). Then, for all D, with
cmax = E(x,c)∼D maxi ci (with (x, c) as in Def (3.1)):

L(D, hnew) ≤ L(D, h) + Tβ`CS
h (h′) +

1

2
β2T 2cmax (3.4)

This lemma states that applying a single iteration of Searn does not cause the structured
prediction loss of the learned hypothesis to degrade too much (recall that, beginning with
the optimal policy, by moving away from this policy, our loss will increase at each step).
In particular, up to a first order approximation, the loss increases proportional to the loss
of the learned classifier.

Given this lemma one can prove the following theorem (proof in appendix):

Theorem 3.6 (Convergence). For all D, after C/β iterations of Searn beginning
with a policy h0 with loss L(D, h0), and average learned losses as Eq (3.5).

`avg =
1

C/β

C/β
∑

i=1

`cs
h(i−1)(h

(i)) (3.5)
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(Each loss is with respect to the learned policy at that iteration), the loss of the final
learned policy h (without the optimal policy component) is bounded by Eq (3.6).

L(D, h) ≤ L(D, h0) + CT`avg + cmax

(

1

2
CT 2β + T exp[−C]

)

(3.6)

This theorem states that after C/β iterations of the Searn algorithm, the learned
policy is not much worse than the quality of the optimal policy h0. Finally, I state the
following corollary that suggests a choice of the constants β and C from Theorem 3.6.
The proof is by algebra.

Corollary 3.7. For all D, with C = 2 ln T and β = 1/T 3 the loss of the learned policy
is bounded by:

L(D, h) ≤ L(D, h0) + 2T ln T`avg + (1 + ln T )cmax/T

Although using β = 1/T 3 and iterating 2T 3 ln T times is guaranteed to leave us
with a provably good policy, such choices might be too conservative in practice. In the
experimental results described in future chapters, I use a development set to perform a
line search minimization to find per-iteration values for β and to decide when to stop
iterating. This is an acceptable approach for the following reason. The analytical choice
of β is made to ensure that the probability that the newly created policy only makes one
different choice from the previous policy for any given example is sufficiently low. The
choice of β assumes the worst: the newly learned classifier will always disagree with the
previous policy. In practice, this rarely happens. After the first iteration, the learned
policy is typically quite good and only rarely differs from the optimal policy. So choosing
such a small value for β is unneccesary: even with a higher value, the current classifier
will not often disagree with the previous policy.

3.6 Policies

Searn functions in terms of policies, a notion borrowed from the field of reinforcement
learning. This section discusses the nature of the optimal policy assumption and the
connections to reinforcement learning.

3.6.1 Optimal Policy Assumption

The only assumption Searn makes is the existence of an optimal policy π∗, defined
formally in Definition 3.3. For many simple problems under standard loss functions, it
is straightforward to compute π∗ in constant time. For instance, consider the sequence
labeling problem (discussed further in Chapter 4). A standard loss function used in
this task is Hamming loss: of all possible positions, how many does our model predict
incorrectly. If one performs search left-to-right, labeling one element at a time (i.e., each
element of the y vector corresponds exactly to one label), then π∗ is trivial to compute.
Given the correct label sequence, π∗ simply chooses at position i the correct label at
position i. However, Searn is not limited to simple Hamming loss. A more complex loss
function often considered for the sequence segmentation task is F-score over (correctly
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labeled) segments. As discussed in Section 4.1.3, it is just as easy to compute the optimal
policy for this loss function. This is not possible in many other frameworks, due to the
non-additivity of F-score. This is independent of the features.

This result—that Searn can learn under strictly more complex structures and loss
functions than other techniques—is not limited to sequence labeling, as demonstrated
in Theorem 3.8. In order to prove this, I need to formalize what I consider as “other
techniques.” I use the max-margin Markov network (M3N) formalism (Section 2.2.7) for
comparison, since this currently appears to be the most powerful generic framework. In
particular, learning in M3Ns is often tractable for problems that would be #P-hard in
conditional random fields. The M3N has several components, one of which is the ability
to compute a loss-augmented minimization (Taskar et al., 2005). This requirement states
that Eq (3.7) is computable for any input x, output set Yx, true output y and weight
vector w.

opt(Yx, y, w) = arg min
ŷ∈Yx

w
>Φ(x, ŷ) + l(y, ŷ) (3.7)

In Eq (3.7), Φ(·) produces a vector of features, w is a weight vector and l(y, ŷ) is the
loss for prediction ŷ when the correct output is y.

Theorem 3.8. Suppose Eq (3.7) is computable in time T (x); then the optimal policy is
computable in time O(T (x)). Further, there exist problems for which the optimal policy is
computable in constant time and for which Eq (3.7) may require exponential computation.

See the appendix for a proof.

3.6.2 Search-based Optimal Policies

One advantage of the Searn algorithm and the theory presented in Section 3.5 is that
they do not actually hinge on having an optimal policy to train against. One can use
Searn to train against any policy. By Corollary 3.7, the loss of the learned policy simply
contains a linear factor L(D, h0) for the loss of the policy against which we train. If one
trains against an optimal policy L(D, h0) = 0, but for non-optimal policies, the result
still holds. Importantly one does not need to know the value of L(D, h0) to use Searn.

One artifact of this observation is that one can use search as a surrogate optimal
policy for Searn. That is, it may be the case that it is impossible to construct a search
space in such a way that both computing the optimal policy and computing appropriate
features are easy. For example, in the machine translation case, the left-to-right decoding
style is natural and integrates nicely with an n-gram language model feature, but renders
the computation of a Bleu-optimal policy intractable.

The solution is the following. Recall that when applying Searn, we have an input x
and a cost vector c (alternatively, we have a “true output” y and a loss function). At any
step of Searn, we need to be able to compute the best next action (note that this is the
only requirement that needs to be fulfilled to apply Searn). That is, given a node in the
search space, and the cost vector c, we need to compute the best step to take. This is
exactly the standard search problem: given a node in a search space, we find the shortest
path to a goal. By taking the first step along this shortest path, we obtain an optimal
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policy (assuming this shortest path is, indeed, shortest). This means that when Searn

asks for the best next step, one can execute any standard search algorithm to compute
this, for cases where the optimal policy is not available analytically.

The interesting thing to notice here is that under this perspective, we can see Searn

as learning how to search. That is, there is some underlying search algorithm that is near
optimal (because it knows the true output), and Searn is attempting to learn a policy
to mimic this algorithm as closely as possible. From the perspective of the theory, all the
bounds apply in this case as well, and the policy degradation by training on a search-
based policy rather than a truly optimal policy is at most the difference in performance
between the two policies.

Given this observation, we have reduced the requirement of Searn: instead of re-
quiring an optimal policy, we simply require that one can perform efficient approximate
search. This leads to the question: is this always possible. Though this is not a theorem,
there is some intuition that this should be the case. For contradiction, suppose that we
can not construct a search algorithm that does well (against which we could train). This
means that knowing the cost vector (equivalently, knowing the correct output), we cannot
construct a search algorithm that can find a low-loss output. If, knowing the correct out-
put, we cannot find a good one, the learning problem seems hopeless. However, as always,
it is up to the practitioner to structure the search space so that search and learning can
be successful.

3.6.3 Beyond Greedy Search

The foregoing analysis assumes that the search runs in a purely greedy fashion. In
practice, employing a more complex search technique, such as beam search, is useful.
Fortunately, there is a straightforward mapping from beam search to greedy search by
modifying the search space. Instead of moving a single robot in a search space, we can
consider moving a beam of k robots in that space. This corresponds to a larger space
whose elements are configurations of k robots. The only difference between the two is
that the expected length of a search path, T , may increase.

Formally, there is a small issue with how to choose which robot’s output to select to
make the final prediction. The method I employ is as follows. Once a robot has created a
full output, it must make one final “I’m done” decision. Once a single robot chooses the
“I’m done” action, the search process ends with this robot’s output. There are several
advantages to doing the final step in this manner. It does not add bias by having an
arbitrary selection procedure. Moreover, it enables the algorithm to learn to make the
final decision quickly, if possible. In a sense, it also subsumes the reranking approach (see
Section 2.2.9). This is because, in the worst case, all robots will find completed hypotheses
and then the final decision is just a classification task between all possible “I’m done”
action. This is very similar to a reranking problem. The advantage to running Searn in
this manner is that it no longer makes sense to apply reranking as a postprocessing step
to Searn: it should never be beneficial.

In general, Searn makes no assumptions about how the search process is structured.
A different search process will lead to a different bias in the learning algorithm. It is
up to the designer to construct a search process so that (a) a good bias is exhibited and
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(b) computing the optimal policy is easy. For instance, for some combinatorial problems
such as matchings or tours, it is known that left-to-right beam search tends to perform
poorly. For these problems, a local hill-climbing search is likely to be more effective in
the sense that it will render the underlying classification problems simpler.

From a theoretical perspective, so long as computational complexity issues are ignored,
there is no reason to consider anything more than greedy search. This is because any
search algorithm can feign as a greedy algorithm. When asked for a greedy step, the
algorithm runs the complex search algorithm to completion and then returns the first
step taken by this algorithm. While this obviates the intention behind greedy search, our
theoretical results are complexity-agnostic and hence cannot be improved by moving to
more complex search techniques.

One interesting corollary of this analysis has to do with the notion of NP-completeness.
One might look at the foregoing as giving a method for solving arbitrarily complex prob-
lems in a purely greedy fashion, thus showing that FP=FNP. A closer inspection will
reveal where this argument breaks down: we have only shown FP=FNP if the underly-
ing binary classifier can achieve an error rate of 0. This means that (assuming FP6=FNP)
one of the following must happen for computationally hard structured prediction prob-
lems. (1) The sample complexity of the underlying binary classification problems must
become unwieldy. (2) The computational complexity of learning an optimal binary clas-
sifier must grow exponentially. There is a trade-off between the complexity of the search
algorithm (and hence the expected length of the search path) and the underlying sample
complexity. We could predict the entire structure in one step with low T but high sample
complexity, or we could predict the structure in many steps with (hopefully) lower sample
complexity. Balancing this trade-off is an open question.

3.6.4 Relation to Reinforcement Learning

Viewing the structured prediction problem as a search problem enables us to see parallels
to reinforcement learning; see (Singh, 1993; Sutton and Barto, 1998) for introductions.

Definition 3.9 (Reinforcement Learning). A reinforcement learning problem R is
a conditional probability table R(o′, r | (o, a, r)∗) on an observation set O and rewards
r ∈ [0,∞) given any (possibly empty) history (o, a, r)∗ of past observations, actions (from
an action set A), and rewards.

The goal of the (finite horizon) reinforcement learning problem is as follows. Given
some horizon T , find a policy π : (o, a, r)∗ → a, optimizing the expected sum of rewards:
η(R, π) = E(o,a,r)T∼R,π{

∑T
t=1 rt}. Here, rt is the tth observed reward, and the expectation

is over the process which generates a history using R and choosing actions from π.

It is possible to map a structured prediction problem D to a (degenerate) reinforce-
ment learning problem R(D) as follows. The reinforcement learning action set A is the
space of indexed predictions, so Ak = Y, and A = Yi. The observation o′ is x initially,
and the empty set otherwise. The reward r is zero, except at the final iteration when it is
the negative loss for the corresponding structured output. Putting this together, one can
define a reinforcement learning problem R(D) according to the following rules: When
the history is empty, o′ = x and r = 0, where x is drawn from the marginal D(x). For

44



all non-empty histories, o′ = ∅. The reward r is zero, except when t = k, in which case
r = −ca, where c is drawn from the conditional D(c | x), and ca is the ath value of c,
thinking of a as an index.

Solving the search-based structured prediction problem is equivalent to solving the
induced reinforcement learning problem. For a policy π, we define search(π) to be the
structured prediction algorithm that behaves by searching according to π. The following
theorem states that these are, in fact, equivalent problems (the proof is a straightforward
application of the definitions):

Theorem 3.10. Let D be an structured prediction problem and let R(D) be the in-
duced reinforcement learning problem. Let π be a policy for R(D). Then η(R(D), π) =
L(D, search(π)) (where L is from Eq (3.1)), where η denotes regret (the difference in loss
between the optimal policy and the learned policy).

It is important to notice that Searn does not solve the reinforcement learning prob-
lem. Searn is limited to cases where one has access to an optimal policy: this is rarely
(if ever!) the case in reinforcement learning, since having an optimal policy would be
all one would need. However, for the limited case of reinforcement learning where all
observations are made initially and an optimal policy is available (which is essentially
exactly the structured prediction problem), Searn is an appropriate algorithm.

One can think of Searn as an approach motivated by “training wheels.” By starting
with the optimal policy, it is like having someone show you how to ride a bike. After one
“iteration,” you forget a bit of the optimal policy (you “weaken” the training wheels) and
are forced to use your own learned experience to compensate. Eventually, you use none
of the optimal policy (you completely remove the training wheels) and ride the bike on
your own.

One can imagine solving structured prediction by following the normal reinforcement
learning practice of starting from a random (or uniform) policy and trying to get better,
rather than following the Searn approach of starting from optimal and trying to not
get much worse. My concern with doing things in the standard way is local maxima.
That is, by starting from the optimal policy, we hope that any maximum we learn will
be close to the global maximum. On the other hand, if one begins with a uniform policy
and applies a standard reinforcement learning algorithm like conservative policy iteration
(Kakade and Langford, 2002) to structured prediction setting, one obtains a loss bound
that depends on T 2 (Daumé III, Langford, and Marcu, 2005). This is worse than the
T ln T bound achieved by Searn (Theorem 3.6), but the comparison is somewhat void,
since both are upper bounds.

3.7 Discussion and Conclusions

I have presented an algorithm, Searn, for solving structured prediction problems. Most
previous work on structured prediction has assumed that the loss function and the features
decompose identically over the output structure (Punyakanok and Roth, 2001; Taskar
et al., 2005). When the features do not decompose, the arg max problem becomes in-
tractable; this has been dealt with previously by augmenting the structured perceptron
to acknowledge a beam-search strategy (Collins and Roark, 2004). To my knowledge, no
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previous work has dealt with the problem of loss functions that do not decompose (such
as those commonly used in problems like machine translation, summarization and entity
detection and tracking). As Searn makes no assumptions about decomposition (either
on the features or the loss), it is applicable to a strictly greater number of problems
than previous techniques (such as the summarization problem described in Chapter 6).
Moreover, by treating predictions sequentially rather than independently (Punyakanok
and Roth, 2001), Searn can incorporate useful features that encompass large spans of
the output.

In addition to greater generality, Searn is computationally faster on standard prob-
lems. This means that in addition to yielding comparable performance to previous al-
gorithms on small data sets, Searn is able to easily scale to handle all available data
(see Chapter 4). Searn satisfies a strong fundamental performance guarantee: given a
good classification algorithm, Searn yields a good structured prediction algorithm. In
fact, Searn represents a family of structured prediction algorithms depending on the
classifier and search space used. One general concern with algorithms that train on their
own outputs is that the classifiers may overfit, leading to overly optimistic performance
on the training data. This could lead to poor generalization. This concern is real, but
does not appear to occur in practice (see Chapter 4, 5 and 6).

The efficacy of Searn hinges on the ability to compute an optimal (or near-optimal)
policy. For many problems including sequence labeling and segmentation (Chapter 4)
and some versions of parsing (see, for example, the parser of Sagae and Lavie (2005),
which is amenable to a Searn-like analysis), the optimal policy is available in closed
form. For other problems, such as the summarization problem described in the Chap-
ter 6 and machine translation, the optimal policy may not be available. In such cases,
the suggested approximation is to perform explicit search. There is a strong intuition
that it should always be possible to perform such search under the assumption that the
underlying problem should be learnable. This implies that Searn is applicable to nearly
any structured prediction problem for which we have sufficient prior knowledge to design
a good search space and feature function.
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Chapter 4

Sequence Labeling

Sequence labeling is the task of assigning a label to each element in an input sequence.
Sequence labeling is an attractive test bed for structured prediction algorithms because
it is likely the simplest non-trivial structure. The canonical example sequence labeling
problem from natural language processing is part of speech tagging. In part of speech
(POS) tagging, one receives a sentence as input and is require to assign a POS to each
word in the sequence. The set of possible parts of speech varies by data set, but is
typically on the order of 20-40. For reasonable sentences of length 30, the number of
possible outputs is is in excess of 1e48. Despite the comparative simplicity of this task,
this set is far too large to exhaustively explore without further assumptions.

Modern state-of-the-art structured prediction techniques fare very well on sequence
labeling problems. However, in order to maintain tractability in search and learning,
one is required to make a Markov assumption in the features. This is essentially a
locality assumption on the outputs. Specifically, a k-th order Markov assumption means
that no feature can reference the value of output labels whose position differs by more
than k positions. It is well known that language does not obey the Markov assumption.
For instance, whether “monitor” is a noun or verb at the beginning of a document is
strongly correlated with how the same word would be tagged at the end of a document.
Nevertheless, for many applications, it appears to be a reasonable approximation.

In this chapter, I present a wide range of results investigating the performance of
Searn on four separate sequence labeling tasks: handwriting recognition, named en-
tity recognition (in Spanish), syntactic chunking and joint chunking and part-of-speech
tagging. These results are presented for two reasons. The first reason is that previous
structured prediction algorithms have reported excellent results on these problems. This
allows us to compare Searn directly to these other algorithms under identical experi-
mental conditions. The second reason is that the simplicity of these problems allow us
to compare both the various tunable parameters of Searn and the affect of the Markov
assumption in these domains.

This chapter is structured as follows. In Section 4.1 I describe the four sequence
labeling tasks on which I evaluate: specifically, the data sets and the features used. In
Section 4.2 I discuss the loss functions considered for the sequence labeling tasks. In
Section 4.3 I describe how Searn may be applied to these loss functions. In Section 4.4
I present experimental results comparing the performance of Searn under different base
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Figure 4.1: Eight example words from the handwriting recognition data set.

classifiers against the alternative structured prediction algorithms from Section 2.2. Fi-
nally, in Section 4.5 I compare the performance of Searn under different choices of the
tunable parameters.

4.1 Sequence Labeling Problems

In this section, I describe the four tasks to which I apply Searn: handwriting recognition,
Spanish named entity recognition, syntactic chunking and joint chunking and part-of-
speech tagging.

4.1.1 Handwriting Recognition

The handwriting recognition task I consider was introduced by Kassel (1995). Later,
Taskar, Guestrin, and Koller (2003) presented state-of-the-art results on this task using
max-margin Markov networks. The task is an image recognition task: the input is a
sequence of pre-segmented hand-drawn letters and the output is the character sequence
(“a”-“z”) in these images. The data set I consider is identical to that considered by
Taskar, Guestrin, and Koller (2003) and includes 6600 sequences (words) collected from
150 subjects. The average word contains 8 characters. The images are 8 × 16 pixels
in size, and rasterized into a binary representation. Two example image sequences are
shown in Figure 4.1 (the first characters are removed because they are capitalized).

The standard features used in this task are as follows. For each possible output
letter, there is a unique feature that counts how many times that letter appears in the
output. Furthermore, for each pair of letters, there is an “edge” feature counting how
many times this pair appears adjacent in the output. These edge features are the only
“structural features” used for this task (i.e., features that span multiple output labels).
Finally, for every output letter and for every pixel position, there is a feature that counts
how many times that pixel position is “on” for the given output letter. In all, there are
26+262 +26× (8× 16) = 4030 features for this problem. This is the identical feature set
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El presidente de la [Junta de Extremadura]ORG , [Juan Carlos Rodŕıguez Ibarra]PER ,
recibirá en la sede de la [Presidencia del Gobierno]ORG extremeño a familiares de varios
de los condenados por el proceso “ [Lasa-Zabala]MISC ” , entre ellos a [Lourdes Dı́ez
Urraca]PER , esposa del ex gobernador civil de [Guipúzcoa]LOC [Julen Elgorriaga]PER ; y a
[Antonio Rodŕıguez Galindo]PER , hermano del general [Enrique Rodŕıguez Galindo]PER .

Figure 4.2: Example labeled sentence from the Spanish Named Entity Recognition task.

to that used by Taskar, Guestrin, and Koller (2003). In the results shown later in this
chapter, all comparison algorithms use identical feature sets.

In the experiments, I consider two variants of the data set. The first, “small,” is the
problem considered by Taskar, Guestrin, and Koller (2003). In the small problem, ten
fold cross-validation is performed over the data set; in each fold, roughly 600 words are
used as training data and the remaining 6000 are used as test data. In addition to this
setting, I also consider the “large” reverse experiment: in each fold, 6000 words are used
as training data and 600 are used as test data.

4.1.2 Spanish Named Entity Recognition

The named entity recognition (NER) task is a subtask of the EDT task discussed in
Chapters 1 and 5. Unlike EDT, NER is concerned only with spotting mentions of entities
with no coreference issue. Moreover, in NER we only aim to spot names and neither
pronouns (“he”) nor nominal references (“the President”). NER was the shared task for
the 2002 Conference on Natural Language Learning (CoNLL). The data set consists of
8324 training sentences and 1517 test sentences; examples are shown in Figure 4.2. A
300-sentence subset of the training data set was previously used by Tsochantaridis et al.
(2005) for evaluating the SVMstruct framework in the context of sequence labeling. The
small training set was likely used for computational considerations. The best reported
results to date using the full data set are due to Ando and Zhang (2005). I report results
on both the “small” and “large” data sets.

Named entity recognition is not naturally a sequence labeling problem: it is a segmen-
tation and labeling problem: first, we must segment the input into phrases and second
we must label these phrases. There are two ways to approach such problems. The first
method is to map the segmentation and labeling problem down to a pure sequence label-
ing problem. The preferred method for performing such a mapping is through the “BIO
encoding” (Ramshaw and Marcus, 1995a). In the BIO encoding, non-names are tagged as
“O” (for “out”), the first word in names of type X are tagged as “B-X” (“begin X”) and
all subsequent name words are tagged as “I-X” (“in X”). While such an encoded enables
us to apply generic sequence labeling techniques, there are advantages to performing the
segmentation and labeling simultaneously (Sarawagi and Cohen, 2004). I discuss these
advantages in the context of Searn in Section 4.3.

The structural features used for this task are roughly the same as in the handwriting
recognition case. For each label, each label pair and each label triple, a feature counts the
number of times this element is observed in the output. Furthermore, the standard set
of input features includes the words and simple functions of the words (case markings,
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[Great American]NP [said]VP [it]NP [increased]VP [its loan-loss reserves]NP [by]PP [$ 93
million]NP [after]PP [reviewing]VP [its loan portfolio]NP , [raising]VP [its total loan and real
estate reserves]NP [to]PP [$ 217 million]NP .

Figure 4.3: Example labeled sentence from the syntactic chunking task.

prefix and suffix up to three characters) within a window of ±2 around the current
position. These input features are paired with the current label. This feature set is fairly
standard in the literature, though Ando and Zhang (2005) report significantly improved
results using a much larger set of features. In the results shown later in this chapter, all
comparison algorithms use identical feature sets.

4.1.3 Syntactic Chunking

The final pure sequence labeling task I consider is syntactic chunking (for English). This
was the shared task of the CoNLL conference in 2000. As before, the input to the syntactic
chunking task is a sentence. The desired output is a segmentation and labeling of the base
syntactic units (noun phrases, verb phrases, etc.). This data set includes 8936 sentences
of training data and 2012 sentences of test data. An example is shown in Figure 4.3. As
in the named entity recognition task, there are two ways to approach the chunking task:
via the BIO encoding and directly. (Several authors have considered the noun-phrase
chunking task instead of the full syntactic chunking task. It is important to notice the
difference, though results on these two tasks are typically very similar, indicating that
the majority of the difficulty is with noun phrases. I report scores on both problems.)

I use the same set of features across all models, separated into “base features” and
“meta features.” The base features apply to words individually, while meta features
apply to entire chunks. The standard base features used are: the chunk length, the word
(original, lower cased, stemmed, and original-stem), the case pattern of the word, the first
and last 1, 2 and 3 characters, and the part of speech and its first character. I additionally
consider membership features for lists of names, locations, abbreviations, stop words, etc.
The meta features I use are, for any base feature b, b at position i (for any sub-position
of the chunk), b before/after the chunk, the entire b-sequence in the chunk, and any 2-
or 3-gram tuple of bs in the chunk. I use a first order Markov assumption (chunk label
only depends on the most recent previous label) and all features are placed on labels, not
on transitions. In the results shown later in this chapter, some of the algorithms use a
slightly different feature set. In particular, the CRF-based model uses similar, but not
identical features; see (Sutton, Sindelar, and McCallum, 2005) for details.

4.1.4 Joint Chunking and Tagging

In the preceding sections, I considered the single sequence labeling task: to each element
in a sequence, a single label is assigned. In this section, I consider the joint sequence
labeling task. In this task, each element in a sequence is labeled with multiple tags.
A canonical example of this task is joint POS tagging and syntactic chunking (Sutton,
Rohanimanesh, and McCallum, 2004). An example sentence jointly labeled for these two
outputs is shown in Figure 4.4 (under the BIO encoding).
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GreatNNP
B-NP

AmericanNNP
I-NP

saidVBD
B-VP

itPRP
B-NP

increasedVBD
B-VP

itsPRP$
B-NP

loan-lossNN
I-NP

reservesNNS
I-NP

byIN
B-PP

$$
B-NP

93CD
I-NP

millionCD
I-NP

afterIN
B-PP

reviewingVBG
B-VP

itsPRP$
B-NP

loanNN
I-NP

portfolioNN
I-NP

..
O

Figure 4.4: Example sentence for the joint POS tagging and syntactic chunking task.

Under a näıve implementation of joint sequence labeling, where the J label types
(each with Lj classes) are collapsed to a single tag, the complexity of exact dynamic
programming search with Markov order k scales as O((

∏

j Lj)
k+1). For even moderately

large Lj or k, this search quickly becomes intractable. In order to apply models like
conditional random fields, one has to resort to complex and slow approximate inference
methods, such as message passing algorithms (Sutton, Rohanimanesh, and McCallum,
2004).

Fundamentally, there is little difference between standard sequence labeling and joint
sequence labeling. I use the same data set as for the standard syntactic chunking task
(Section 4.1.3) and essentially the same features. The only difference in features has to do
the structural features. The structural features I use include the obvious Markov features
on the individual sequences: counts of singleton, doubleton and tripleton POS and chunk
tags. I also use “crossing sequence” features. In particular, I use counts of pairs of POS
and chunk tags at the same time period as well as pairs of POS tags at time t and chunk
tags at t− 1 and vice versa.

4.2 Loss Functions

For pure sequence labeling tasks (i.e., when segmentation is not also done), there are
two standard loss functions: whole-sequence loss and Hamming loss. Whole-sequence
loss gives credit only when the entire output sequence is correct: there is no notion of
partially correct solutions. Hamming loss is more forgiving: it gives credit on a per label
basis. For a true output y of length N and hypothesized output ŷ (also of length N),
these loss functions are given in Eq (4.1) and Eq (4.2), respectively.

`WS(y, ŷ) , 1

[

N
∨

n=1

yn 6= ŷn

]

(4.1)

`Ham(y, ŷ) ,

N
∑

n=1

1
[

yn 6= ŷn

]

(4.2)

It is fairly clear that both of these loss functions decompose over the structure of Y.
That is, for any permutation π, `Ham(y, ŷ) = `Ham(π ◦ y, π ◦ ŷ), where we treat π as a
group action over the sequence. The proof of this statement is trivial.

The most common loss function for joint segmentation and labeling problems (like the
named entity recognition and syntactic chunking problems) is F1 measure over chunks.
This is the geometric mean of precision and recall over the (properly-labeled) chunk
identification task, given in Eq (4.3).
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`F(y, ŷ) ,
2 |y ∩ ŷ|
|y|+ |ŷ| (4.3)

In Eq (4.3), the interpretation of cardinality and intersection is in terms of chunks.
That is, the cardinality of y is simply the number of chunks identified. The cardinality of
the intersection is the number of chunks in common (i.e., the number of correctly identified
chunks). As can be seen in Eq (4.3), one is penalized both for identifying too many chunks
(penalty in the denominator) and for identifying too few (penalty in the numerator).
The advantage of F1 measure over Hamming loss seen most easily in problems where the
majority of words are “not chunks”—for instance, in gene name identification (McDonald
and Pereira, 2005)—Hamming loss will often prefer a system that identifies no chunks
to one that identifies some correctly and other incorrectly. Using a weighted Hamming
loss can not completely alleviate this problem, for essentially the same reasons that a
weighted zero-one loss cannot optimize F1 measure in binary classification, though one
can often achieve an approximation (Lewis, 2001; Musicant, Kumar, and Ozgur, 2003).

4.3 Search and Optimal Policies

The choice of “search” algorithm in Searn essentially boils down to the choice of output
vector representation, since, as defined, Searn always operates in a left-to-right manner
over the output vector. In this section, we describe vector representations for the output
space and corresponding optimal policies for Searn.

4.3.1 Sequence Labeling

The most natural vector encoding of the sequence labeling problem is simply as itself. In
this case, the search will proceed in a greedy left-to-right manner with one word being
labeled per step. This search order admits some linguistic plausibility for many natu-
ral language problems. It is also attractive because (assuming unit-time classification)
it scales as O(NL), where N is the length of the input and L is the number of labels,
independent of the number of features or the loss function. However, this vector encod-
ing is also highly biased, in the sense that it is perhaps not optimal for some (perhaps
unnatural) problems.

An alternative vector encoding is the following. We begin with a completely unlabeled
sequence and, at each search step, we label a single (arbitrarily positioned) word. After
sufficiently many steps have passed, we end this process. We can overwrite old labels. It
is possible to define this search process as a vector in the following encoding. Let N ′ � N
be a “time limit.” Define our vectors as sequences of length N ′ over the label set N ×L.
The intuition is that choosing the label (n, l) means that the element at position n is now
labeled with label l. After N ′ steps, we take the most recent label for each position as
the final label (and an arbitrary label for any unspecified position).

This “unordered” search procedure is attractive because it does not require us to
hard-code a search order. In practice, we might expect the algorithm to learn to first
predict the positions it is sure about and the later move on to the less sure positions
when more global information is available (nearby words have been labeled). We might
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hope that this will lead to a less biased algorithm. In fact, if N ′ is sufficiently large, this
representation would potentially allow the search algorithm to mimic belief propagation
(Yedidia, Freeman, and Weiss, 2003) over the sequence. We do, however, pay a cost for
this added flexibility. The label space has increased by a factor of N , which means that
(again, assuming unit-time classification) the algorithm now scales as O(N 2L), which
is reasonable only for short sequences. While this is perhaps unattractive for sequence
labeling problems, this seems like an entirely reasonable approach to image segmentation
problems.

4.3.2 Segmentation and Labeling

For joint segmentation and labeling tasks, such as named entity identification and syn-
tactic chunking, there are two natural encodings: word-at-a-time and chunk-at-a-time.
In word-at-a-time, one essentially follows the “BIO encoding” and tags a single word in
each search step. In chunk-at-a-time, one tags single chunks in each search step, which
can consist of multiple words (after fixing a maximum phrase length).

Under the word-at-a-time encoding, an input of length N leads to a vector of length
N over L + 1 labels. Here L of the labels correspond to “begin” a phrase, while the
L + 1st label corresponds to “continue the current phrase.” Any vector that begins with
the L + 1st label attains maximal loss.

Under the chunk-at-a-time encoding, an input of length N leads to a vector of length
N over M ×L + 1 labels, where M is the maximum phrase length. The interpretation of
the first M × L labels, for instance (m, l) means that the next phrase is of length m and
is a phrase of type l. The “+1” label corresponds to a “complete” indicator. Any vector
for which the sum of the “m” components is not exactly N attains maximum loss.

Just as there is a natural “unordered” search procedure for standard sequence labeling,
there is also a natural unordered search procedure both for word-at-a-time chunking and
chunk-at-a-time chunking.

Other search orders (or, more precisely, vector representations) are possible. For
instance, one could perform right-to-left decoding or inside-out decoding or first decode
odd positions then even. All of these will exhibit different biases, which may or may not
be good for the particular problem and data set.

4.3.3 Optimal Policies

For the sequence labeling problem under Hamming loss, the optimal policy is essentially
always to label the next word correctly. In the left-to-right order, this is straightforward.
In the arbitrary ordering cases, after n < N words have been tagged correctly, there
are N − n possible steps the optimal policy could take. It could either tag a currently
untagged word correctly, or repair a previously incorrectly tagged word. In practice,
I deterministically choose to tag the left-most untagged word first, until no words are
tagged, at which point the policy corrects the tag of the left-most incorrectly tagged word
first. One could alternatively randomize over these choices, but this might introduce too
much noise into the system.

For sequence labeling under zero-one loss, the optimal policy is the same as for Ham-
ming loss. Technically, once an error has been made, the optimal policy is agnostic as to
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future choices. This could be encoded in a randomized policy. In practice, I use the same
policy as for Hamming loss.

As far as the segmentation problem, word-at-a-time and chunk-at-a-time behave very
similarly with respect to the loss function and optimal policy. I will discuss word-at-
a-time because its notationally more convenient, but the difference is negligible. The
optimal policy can be computed by analyzing a few options in Eq (4.4)

π∗(x, y1:T , ŷ1:t−1) =







begin X yt = begin X
in X yt = in X and ŷt−1 ∈ {begin X, in X}
out otherwise

(4.4)

It is fairly straightforward to show that this policy is optimal. There is, actually,
another optimal policy. For instance, if yt is “in X” but ŷt−1 is “in Y ” (for X 6= Y ), then
it is equally optimal to select ŷt to be “out” or “in Y ”. In theory, when the optimal policy
does not care about a particular decision, one can randomize over the selection. However,
in practice, I always default to a particular choice to reduce noise in the learning process.

For all of the policies described above, it is also straightforward to compute the optimal
approximation for estimating the expected cost of an action. In the Hamming loss case,
the loss is 0 if the choice is correct and 1 otherwise. For the whole-sequence loss, the
loss is 0 if the choice is correct and all previous choices were correct and 1 otherwise.
Note that under whole-sequence loss, once an error has been made, the cost function
becomes ambivalent between future alternatives. The computation for F1 loss is a bit
more complicated: one needs to compute an optimal intersection size for the future and
add it to the past “actual” size. This is also straightforward by analyzing the same cases
as in Eq (4.4).

4.4 Empirical Comparison to Alternative Techniques

In this section, I compare the performance of Searn to the performance of alternative
structured prediction techniques over the data sets described in Section 4.1. The results
of this evaluation are shown in Table 4.1. In this table, I compare raw classification
algorithms (perceptron, logistic regression and SVMs) to alternative structured prediction
algorithms (structured perceptron, CRFs, SVMstructs and M3Ns) to Searn with three
baseline classifiers (perceptron, logistic regression and SVMs). For all SVM algorithms
and for M3Ns, I compare both linear and quadratic kernels (cubic kernels were evaluated
but did not lead to improved performance over quadratic kernels).

For all Searn-based models, I use the the following settings of the tunable parameters
(see Section 4.5 for a comparison of these settings). I use the optimal approximation for
the computation of the per-action costs. I use a left-to-right search order with a beam
of size 10. For the chunking tasks, I use chunk-at-a-time search. I use weighted all pairs
and costing to reduce from cost-sensitive classification to binary classification.

Note that some entries in Table 4.1 are missing. The vast majority of these entries
are missing because the algorithm considered could not reasonably scale to the data set
under consideration. These are indicated with a “∼” symbol. Other entries are not
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ALGORITHM Handwriting NER Chunk C+T
Small Large Small Large

CLASSIFICATION
Perceptron 65.56 70.05 91.11 94.37 83.12 87.88
Log Reg 68.65 72.10 93.62 96.09 85.40 90.39
SVM-Lin 75.75 82.42 93.74 97.31 86.09 93.94
SVM-Quad 82.63 82.52 85.49 85.49 ∼ ∼

STRUCTURED
Str. Perc. 69.74 74.12 93.18 95.32 92.44 93.12
CRF − − 94.94 ∼ 94.77 96.48
SVMstruct − − 94.90 ∼ − −
M3N-Lin 81.00 ∼ − − − −
M3N-Quad 87.00 ∼ − − − −

SEARN
Perceptron 70.17 76.88 95.01 97.67 94.36 96.81
Log Reg 73.81 79.28 95.90 98.17 94.47 96.95
SVM-Lin 82.12 90.58 95.91 98.11 94.44 96.98
SVM-Quad 87.55 90.91 89.31 90.01 ∼ ∼

Table 4.1: Empirical comparison of performance of alternative structured prediction algo-
rithms against Searn on sequence labeling tasks. (Top) Comparison for whole-sequence
0/1 loss; (Bottom) Comparison for individual losses: Hamming for handwriting and
Chunking+Tagging and F for NER and Chunking. Searn is always optimized for the
appropriate loss.

available simply because the results I report are copied from other publications and these
publications did not report all relevant scores. These are indicated with a “−” symbol.

We observe several patterns in the results from Table 4.1. The first is that structured
techniques consistently outperform their classification counterparts (eg., CRFs outper-
form logistic regression). The single exception is on the small handwriting task: the
quadratic SVM outperforms the quadratic M3N.1 Additionally, for all classifiers, adding
Searn consistently improves performance.

An obvious pattern worth noticing is that moving from the small data set to the large
data set results in improved performance, regardless of learning algorithm. However,
equally interesting is that simple classification techniques when applied to large data sets
outperform complicated learning techniques applied to small data sets. Although this
comparison is not completely fair—both algorithms should get access to the same data—
if the algorithm (like the SVMstruct or the M3N) cannot scale to the large data set, then
something is missing. For instance, a vanilla SVM on the large handwriting data set
outperforms the M3N on the small set. Similarly, a vanilla logistic regression classifier

1However, it should be noted that a different implementation technique was used in this comparison.
The M3N is based on an SMO algorithm, while the quadratic SVM is libsvm (Chang and Lin, 2001).
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trained on the large NER data set outperforms the SVMstruct and the CRF on the small
data sets.

The important observation is that, on the same data set, Searn can perform compara-
bly or better than competing structured prediction techniques. On the small handwriting
task, the two best performing systems are M3Ns with quadratic kernels (87.0% accuracy)
and Searn with quadratic SVMs (87.6% accuracy). On the NER task, Searn with a
perceptron classifier performs comparably to SVMstruct and CRFs (at around 95.9% ac-
curacy). On the Chunking+Tagging task, all varieties of Searn perform comparatively
to the CRF. In fact, the only task on which Searn does not outperform the competition
techniques is on the raw chunking task, for which the CRF obtains an F-score of 94.77
compared to 94.47 for Searn.

The final result from Table 4.1 worth noticing is that, with the exception of the
handwriting recognition task, Searn using logistic regression as a base learner performs
at the top of the pack. The SVM-based Searn models typically perform slightly better,
but not significantly. In fact, the raw averaged perceptron with Searn performs almost
as well as the logistic regression. This is a nice result because the SVM-based models
tend to be expensive to train, especially in comparison to the perceptron. The fact that
this pattern does not hold for the handwriting task is likely due to the fact that the data
for this task is quite unlike the data for the other tasks. For the handwriting task, there
are a comparatively small number of features, and are individually much less predictive
of the class. It is only in combination that good classifiers can be learned.

4.5 Empirical Comparison of Tunable Parameters

In this section, I compare the performance of Searn as I adjust the tunable parameters.
Unless otherwise specified, all experiments are on the small data sets. In all experiments,
I use logistic regression as the base learner. This choice was made because, with the
exception of the handwriting recognition task, the Searn with logistic regression was
never significantly worse than any other base learner. Moreover, it is more efficient than
the SVM, which also performed well. The parameters compared are:

• Computation of expected loss: by single Monte-Carlo sample, by ten samples or by
the optimal approximation.

• Vector encoding: left-to-right or unordered; also, for segmentation problems, word-
at-a-time versus chunk-at-a-time.

• Beam size: compare greedy search to beam search with different sized beams.

• Multiclass reduction: weighted all pairs versus unweighted all pairs.

• Number of iterations of Searn.

Not all parameters are compared on all data sets. For instance, the unordered vector
encoding is only tested on the handwriting recognition task because the output sequences
tend to be sufficiently short that paying the N 2 cost is possible. For all comparisons, one of
the options will be taken as the “baseline” and the others will be compared by percentage
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Handwriting Spanish NER Chunking Chunk+Tag

→ MC 1 +0.071% +0.032% +0.048% −0.033%
→ MC 10 +0.092% +0.052% +0.069% +0.051%

Table 4.2: Evaluation of computation of expected loss: differences between both single
Monte-Carlo (MC 1) and ten Monte-Carlo (MC 10) against the optimal approximation.

Spanish NER Chunking

→ Word −4.194% −2.038%

Table 4.3: Evaluation of computation of vector encodings: changes in performance for
using word-at-a-time rather than chunk-at-a-time encodings.

change in performance. Positive values mean improved performance by changing the
baseline setting; negative values indicate decreased performance.

Table 4.2 shows the differences in system quality for models learned using alternative
computations of the expected loss. The computation based on the optimal approximation
is used as a baseline. The “→ MC 1” rows show the change in performance by using a
single Monte-Carlo sample instead. As we can see, the performance does not change
very much when moving to Monte-Carlo samples. A small degradation in performance
is observed using single samples for the Chunking+Tagging problem. When 10 samples
are used, all improvements are positive, but tiny. Given the computational overhead of
using Monte-Carlo samples instead of the optimal approximation, for these problems, it
is probably worthwhile to stay with the approximation.

Next, I compare left-to-right versus unordered vector encodings for the handwriting
recognition task (small data set). By moving to an unordered vector encoding, the per-
formance on this task rises by 0.48%. This gain comes at a significant computational
cost, and is insufficient to make the logistic regression model competitive with the SVM
models on this task.

In Table 4.3, I compare chunk-at-a-time search to word-at-a-time search for the seg-
mentation problems: Spanish named entity recognition and syntactic chunking. Note
that the feature space naturally expands somewhat when moving to a chunking frame-
work. We can see that in the NER task, moving to word-at-a-time search significantly
hurts performance. The change is smaller, but still negative, for the chunking task. This
echos other recent results (Sarawagi and Cohen, 2004; Ciaramita and Altun, 2005).

In Table 4.4, different beam sizes are compared. The baseline is beam 10 search.
The differences in performance for beam 10 versus greedy search are fairly pronounced,
especially for the handwriting task. However, for the other tasks, the differences are
comparatively small. The differences between beam 5, beam 10 and beam 25 are relatively
negligible for all tasks. This suggests that at least for these problems, the necessity to
propagate large amounts of uncertainty is low.

In Table 4.5, I compare the performance on the chunking problems when using un-
weighted all pairs (as opposed to weighted all pairs). We can see that there is a big
performance drop for not using weighted classification for the NER task, but not so large
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Handwriting Spanish NER Chunking Chunk+Tag

→ Greedy −0.813% −0.371% −0.527% −0.594%
→ Beam 5 −0.157% −0.081% −0.098% −0.094%
→ Beam 25 +0.052% +0.021% +0.016% +0.019%

Table 4.4: Evaluation of beam sizes: differences between beam search and greedy search
(baseline is a beam of 10).

Spanish NER Chunking

→ Unweighted −3.195% −0.342%

Table 4.5: Evaluation of multiclass reduction strategies: comparing unweighted all pairs
to weighted all pairs.

a drop for the chunking task. This difference can likely be attributed to the significance
of the F-score for the two tasks. In NER, only very few words in a sentence are part of
a chunk, but in chunking, almost every word is. This means that the weighting is much
more pronounced in the NER task and therefore the results will be significantly more
sensitive to the weighting for the NER problem.

Finally, in Figure 4.5, I plot the performance of the learned policy for the Searn-
based models for the four tasks as the number of iterations increases. For these graphs,
I use a constant value of β = 1 for the interpolation: pure policy-iteration. The curves
are somewhat different for each problem, but in general an optimum is reached in 5-15
iterations and then performance either levels off (eg., for syntactic chunking) or beings
to drop (eg., for handwriting recognition). The drop in performance is likely due to
overfitting. Note that these curves are the performance of the learned policy without the
optimal policy on the test data, so these graphs do not contradict the Searn theorem of
uniform degradation of performance (Lemma 3.5).

In summary, this analysis has shown then following trends:

• For the computation of the expected loss, using the optimal approximation does
not significantly worsen the results. Moreover, the optimal approximation is signif-
icantly more efficient. For these problems, it is probably the preferable approach.

• For the vector encoding, chunk-based search is significantly better than word-based
search.

• For the beam size, a small beam tends to consistently outperform greedy search,
but there is little bang for the buck when moving to larger and larger beam settings.

• For the multiclass reduction, using weighted-all-pairs is important, especially when
the cost function being optimized is significantly different from raw accuracy.
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Figure 4.5: Number of iterations of Searn for each of the four sequence labeling problem.
Upper-left: Handwriting recognition; Upper-right: Spanish named entity recognition;
Lower-left: Syntactic chunking; Lower-right: Joint chunking/tagging.

4.6 Discussion and Conclusions

In this chapter, I have presented experimental results on simple sequence labeling tasks
that showcase the efficacy of Searn (see Section 4.4). These results show that Searn is
competitive with competing structured prediction techniques and scales better to large
data sets. I have furthermore compared the internal settings of Searn (Section 4.5).
These results have shown that the optimal approximation is an efficient, effective method
for computing the losses associated with different actions. Small beams are sufficient for
these problems, and chunk-at-a-time decoding leads to significant performance increases.

While these results are useful, they should be taken with a grain of salt. Sequence
labeling is a very easy problem. The structure is simple and the most common loss
functions decompose over the structure. The comparatively good performance of raw
classifiers suggests that the importance of structure is minor. In fact, some results sug-
gest that one need not actually consider the structure at all for some such problems
(Punyakanok and Roth, 2001; Punyakanok et al., 2005).
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An additional caveat is that performance is quite high in all of these problems. While
this is a good phenomenon to observe, it also means that some generalizations might not
extend to harder problems. For instance, it is easy to imagine that for harder problems,
using larger beams would help significantly. Moreover, the optimal approximation is good
largely because the learned classifiers tend to perform near optimally. Even if not, the
dependence of the classifier’s prediction on the n+10th word is relatively independent of
its prediction on the nth word. For more problems with more complex structure, or for
which performance is not so good, a larger performance improvement might be observed
by using Monte-Carlo samples.
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Chapter 5

Entity Detection and Tracking

This chapter focuses on the application of Searn to the entity detection and tracking
problem (introduced in Section 1.2). First, I more exactly define the problem from the
perspective of the data set I use for evaluation. Second, I briefly survey prior work on this
problem and discuss why Searn is an attractive tool to apply to the EDT problem. Next,
I describe the search structure I employ and the features. I then present empirical results
showing state-of-the-art performance on the ACE 2004 EDT data set and conclude with
a comparison of Searn to standard models for this problem.

5.1 Problem Definition

The entity detection and tracking problem (EDT) focuses on discovering the set of entities
discussed in a document and identifying the textual span of the document (the mentions)
that refer to these entities. As part of the detection phase, a system must also identify,
for each entity, its corresponding entity type (person, place, organization, etc.) and, for
each mention of an entity, its mention type (name, nominal, pronoun, etc.).

In Figure 5.1 (reproduced from Figure 1.2), I show one paragraph from our data set,
wherein entities have been identified, types have been disambiguated and coreference
chains have been marked. In this paragraph, I underline every entity mention, each of
which is followed by a superscript that identifies the mention type and a subscript that
identifies both the entity type and coreference chain of that mention. For instance, the
word “commander” is a nominal reference to a person, identified as entity number 2. At
the beginning of the second sentence, the word “I” is a pronominal mention also referring
to entity 2 (and hence is the same entity). A few of the coreference chains that appear in
this extract are: {JERUSALEM}, {commander, I, Gen, Yitzhak Eitan}, {Israeli, Israeli}
and {troops}.

The full entity detection and tracking task is to take an input document and produce
the annotation of all entities and mentions, like that seen in Figure 1.2. This is typically
broken into two phases: first, a mention detection phase underlines all mentions and
assigns to them a mention type and entity type; second, a coreference phase links together
the already-identified mentions by assigning the numbers to each mention (of course, the
numbering scheme is arbitrary – any numbering that preserves identity would be just as
good as another).
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JERUSALEMnam
gpe–1 – The commandernom

per–2 of Israelipre
gpe–3 troopsnom

per–4 in the
West Banknam

loc–5 said there was a simple goal to the helicopterpre
veh–6 assassination on Thurs-

day of a gun-wielding local Palestinianpre
gpe–7 leadernom

per–8 . “ Ipro
per–2 hope it will reduce the

violence and bring back reason to this areanom
loc–9 ” , Maj Genpre

per–2 Yitzhak Eitannam
per–2 told

reportersnom
per–10 at a briefing hours after three missilesnom

wea–11 fired from an Apachepre
veh–6

helicopternom
veh–6 killed Hussein Obaiyatnam

per–8 , along with two middle-aged womennom
per–12

standing near hispro
per–8 vannom

veh–13 in Beit Sahurnam
gpe–14 , near Bethlehemnam

gpe–15 . Instead
, it has touched off one of the bloodiest and most intense weekends of fighting yet
in the six-week-old conflict , with gunfire crackling through the West Banknam

loc–5 and
Gaza Stripnam

loc–16 . Five Palestiniansnom
per–17 and an Israelipre

gpe–3 soldiernom
per–18 were shot

dead on Friday .

Figure 5.1: An example paragraph extract from a document from our training data with
entities identified; reproduced from Figure 1.2.

Mention Type Description and Examples

Name (nam) A proper name reference to an entity; for instance “Georg
Cantor,” “Congress,” “Jerusalem,” and “Microsoft” are all
named references.

Nominal (nom) A common noun reference to an entity; for instance “the
man,” “the president,” “the group,” “the country” and “the
company” are all nominal references.

Pronominal (pro) A pronoun reference to an entity; for instance “he,” “they,”
“it,” etc. This also includes words such as “who” in the
construction “Georg Cantor, who died in an asylum, . . . .”

pre-modifier (pre) A reference by a salutation, position or other modifier; for
instance “Palestinian” in the case of “Palestinian leader” or
“President” in the case of “President Nixon.”

Table 5.1: A list of the four possible mention types with descriptions and examples.

In the data set I use, there are four mention types, shown in Table 5.1, including
names, pronouns, nominals and pre-modifiers. Further, there are seven entity types,
shown in Table 5.1, with corresponding subtypes (there are no subtypes for the ‘person’
entity type). Of the entity types, I focus primarily on ‘person,’ ‘organization,’ ‘loca-
tion,’ and ‘GPE,’ since these are the most common and the most general across different
domains.

Like all natural language processing problems, the primary difficulty in the EDT
task is ambiguity and the multiple diverse sources of information required to resolve
this ambiguity. Consider, for instance, the example paragraph shown in Figure 1.2.
Identifying that the “I” in the second sentence is the same person as the “commander”
in the first sentence is an extremely challenging inference to make. In fact, it is possible
that the two mentions actually refer to two different entities who happen to agree in
what they say. Identifying that the “Gen” entity is the same as “Yitzhak Eitan” requires
some knowledge of syntax, as does linking this entity with the pronoun “I.” On the other
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Entity Type Description and Subtypes

Person (per) Person entities are limited to humans. A person may be a
single individual or a group.
Subtypes: None

Organization (org) Organization entities are limited to those with an established
organizational structure.
Subtypes: government, commercial, educational, non-profit,
other

GPE (gpe) A Geographical-Political Entity. GPE entities are politically
defined geographical regions.
Subtypes: address, boundary, celestial, land-region-natural,
region-local, region-subnational, region-national, region-
international, water-body, other

Location (loc) Location entities are limited to geographic entities with phys-
ical extent.
Subtypes: continent, nation, state-or-province, county-or-
district, population-center, other

Facility (fac) Facility entities are human-made artifacts in the domains of
architecture and civil engineering.
Subtypes: building, subarea-building, bounded-area, conduit,
path, barrier, plant, other

Vehicle (veh) Vehicle entities are human-made artifacts that are used for
transportation purposes.
Subtypes: land, air, water, subarea-vehicle, other

Weapon (wea) Weapon entities are human-made artifacts whose primary
purpose is to cause damage.
Subtypes: blunt, exploding, sharp, chemical, biological,
shooting, projectile, nuclear, other

Table 5.2: A list of the seven entity types, with descriptions and subtypes.

hand, identifying that the “Apache” referred to in the second sentence is coreferent with
“helicopter” form the first sentence requires external knowledge that an Apache is a type
of helicopter. Identifying that “his” in the second sentence is coreferent with “Hussein
Obaiyat” and not “Yitzhak Eitan” requires further syntactic knowledge.

In terms of the set of mention types (name, nominal, pronoun and pre-modifier), there
are essentially three distinct sorts of coreference links that must be made: name-to-name,
name-to-nominal and name-to-pronoun (pre-modifiers can typically be identified as either
names or nominals and so they fall into one of the other three classes). Of these, name-
to-name is by far the simplest and can be fairly easily solved with a set of features that
look for string similarity. Name-to-pronoun is the case of pronoun resolution or anaphora
resolution, which has been studied extensively by linguists, both pure and computational.
It is still a difficult problem, but most of the information necessary for making this sort
of decision can be found within the document (except for gender resolution issues). The
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name-to-nominal problem is hard and typically requires external knowledge to solve. The
example from Figure 1.2 of the “Apache”/”helicopter” link is a prime example of this
problem. In this case, there is a hint within the document that “Apache” is a type of
“helicopter” (due to the pre-modifier position), but this cannot be counted on in general.
A significant contribution of this thesis is in developing techniques for handling the name-
to-nominal case.

5.2 Prior Work

The majority of prior work on the entity detection and tracking task splits it into two
separate subproblems: first, one performs mention detection (finding the text spans that
correspond to mentions of entities and identifying their entity types and mention types);
then one performs coreference resolution, which groups the previously-identified mentions
into coreference chains. (There are two notable exceptions. First, (Wellner et al., 2004)
performs integrated extraction and coreference in the context of citation matching using
conditional random field techniques. This is similar to the model discussed below in
Section 5.2.2.3. Very recently, a second approach based entirely on reranking, has shown
improved tagging performance when coreference is included (Ji and Grishman, 2004; Ji,
Rudin, and Grishman, 2006).) Although my eventual goal is to build an integrated
system, from the perspective of comparisons to prior work, I discuss these two subtasks
and corresponding approaches separately. The machine learning approach to both of
these tasks typically involves specifying a set of features that identify aspects of both the
input (the document currently being processed) and the output (in the case of mention
detection, the output tags; in the case of coreference resolution, the decisions about
coreference chains).

5.2.1 Mention Detection

One can reduce the mention detection problem to a simple sequence labeling problem,
such as those discussed in Chapter 4. Most typically, one applies the “BIO encoding”
(Ramshaw and Marcus, 1995b) in order to cast the chunking problem as a tagging prob-
lem. Figure 5.2.1 shows the second half of the second sentence from Figure 1.2 in both
the original sequence-based tagging and the BIO encoding.

Once one has reduced the mention detection problem to a sequence labeling problem,
one can apply any of a plethora of models that have been developed for this task. All
such models can be considered to be finite state machines with a Markovian indepen-
dence assumption. In other words: the score assigned to a particular label sequence is a
combination of the scores obtained by comparing each word to its corresponding label,
and the scores obtained by comparing each label to the k labels that precede it. When
k = 0, there is no dependence among labels. The common case of k = 1 is a first or-
der Markov model, k = 2 is a second order Markov model and so on. The advantage
of making such a Markov assumption is that training and decoding in such models be-
comes tractable through standard variants of the Viterbi algorithm (Viterbi, 1967) and
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Figure 5.2: A partial sentence from our example text in original sequence-based format
and in the BIO-encoding.

the forward-backward algorithm (Baum and Petrie, 1966; Baum and Eagon, 1967). Un-
der these assumptions, any of the standard structured prediction methods discussed in
Chapter 2 can be applied (structured perceptron, CRF, M3N and SVMstruct).

The set of features historically used for mention detection is typically not very diverse.
In the tagging case, features are functions of both the input document, x, and the output
tag sequence, y. Specifically, an input element x ∈ X is simply a word sequence x =
〈x1, . . . , xN 〉 and an output element y is a tag sequence y = 〈y1, . . . , yN 〉. Features are
computed over all positions in these sequences n and are typically broken into a set of
features over the input, if (x, n), and a set of features over the output, og(yn, . . . , yn−k).
The restriction to using only the k most recent tags in the prediction is done purely for
modeling reasons: to allow arbitrary-distance dependencies would result in exponential-
time search and parameter estimation algorithms. For instance, an input feature might
be of the form i1(x, l) = 1 if the word xl is “Cantor” and i1(x, l) = 0, otherwise. An
output feature might be of the form o1(yl, . . . ) = 1 if yl is the label b-per and 0 otherwise.
Combining all pairs of such features results in features having the form i1(x, l)o1(yl, . . . ) =
1 exactly when xn is “Cantor” and yn is b-per.

Typical input features include: word identity, word stem identity, word prefixes and
suffixes, word case form (uppercase, lowercase, initial upper case, etc.) and part of
speech. These features are typically applied within a window of two or three words to
the left and to the right of the word under current consideration. (For instance, the fact
that the previous word is “Mr.” might be a good indication that the current word will
be b-per.) Additionally, one typically considers word membership on lists drawn from
gazetteers, such as lists of states, countries, common names, etc. The output features
used are typically simply the identity of the current tag and the pair of the current tag and
the previous tag. Sometimes the latter “Markov feature” is not combined with the input
features and simply left as a “bias.” I will discuss these features and more in Section 5.4.3,
but the features listed here nearly exhaust those considered in the literature.
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5.2.2 Coreference Resolution

When treated separately from mention detection, one can consider the input to a coref-
erence resolution system to be a document where mentions and their types have been
previously identified. The task then is to group these mentions into coreference sets.
The first large-scale and successful machine learning approach to coreference resolution is
based on a reduction to binary classification (Soon, Ng, and Lim, 2001; Ng and Cardie,
2002; Strube, Rapp, and Müller, 2002; Yang et al., 2003; Luo et al., 2004). Since this is
a theme that will carry through nearly all previous attempts to solve this problem with
machine learning, I spend some time discussing it here. (Note that this is not a formal
reduction in the sense of Section 2.3, but rather an ad hoc mapping.)

5.2.2.1 Binary Classification

Reducing the coreference resolution problem to binary classification is appealing because
there are many very good models for solving the binary classification problem. The gen-
eral approach is to build a classifier that takes a pair of mentions (m1, m2) and produces
a binary response: are m1 and m2 coreferent or not (i.e., do they refer to the same real-
world entity). Given such a classifier, the task at test time is to use these predictions to
generate coreference chains.

The choice of which classifier to use is essentially a matter of personal preference, under
the constraints of computational efficiency. The most popular choices in the literature
have been decision trees (Quinlan, 1993; Cohen, 1995), used by (Aone and Bennett, 1995;
McCarthy and Lehnert, 1995; Soon, Ng, and Lim, 2001; Ng and Cardie, 2002; Strube,
Rapp, and Müller, 2002; Strube and Müller, 2003; Yang et al., 2003), and maximum
entropy models (Della Pietra, Della Pietra, and Lafferty, 1997; Berger, Della Pietra, and
Della Pietra, 1996), used by (Kehler, 1997; Morton, 2000; Luo et al., 2004). This choice
is essentially arbitrary, though different learning models have different biases and fortés,
and further investigation may show one to be better on this task than another (though
it is more likely that performance differences between models are due more to features
than to the choice of learning algorithm).

One significant issue for applying a binary classification algorithm to coreference res-
olution is that of choosing pairs of mentions on which to train a binary classifier. The
most obvious answer would be to select all pairs, and, indeed, many systems do precisely
this (Aone and Bennett, 1995; Ng and Cardie, 2002; Cohen and Richman, 2002; Iida et
al., 2003; Harabagiu, Bunescu, and Maiorano, 2001). There are, however, several draw-
backs to choosing all pairs. First, from a computational perspective, a document that
originally contained 60 mentions (which is about average for our data) will give rise to
60 ∗ 59/2 = 1770 training instances. Summing this over a corpus of roughly 400 doc-
uments leads to just over 700k training instances. This is too large for many machine
learning techniques, especially the kernel-based learners such as support vector machines
which tend to scale at least quadratically in the number of training inputs.

Another, more subtle, issue with using all pairs is that the resulting training set will be
severely biased toward negative instances. On average, the 60 mentions in a document will
refer to only about 20 actual entities (most of which are singletons), resulting in a positive-
to-negative ratio on the order of roughly 1 : 12 (in the case of our data). This means that
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from a 0/1 loss perspective, a classifier that predicts everything to be “not coreferent”
will attain a loss of only about 7.5%, a figure which is difficult to beat. The problem here
lies in the fact that 0/1 is not an appropriate loss function to minimize, but it is also not
immediately clear what is appropriate. One solution commonly employed would be to
weight the positive examples as 12 times more important than the negative examples, but
it is unclear how this particular choice effects the learned classifier, especially as relates
to question 3 above (choice of clustering algorithm). See (Karakoulas and Shawe-Taylor,
1999; Caruana, 2000; Chawla et al., 2002) for further discussion of the imbalanced data
set problem in general machine learning tasks.

A second approach to the problem of selecting training instances is to only compare
a mention with the most recent mention in each coreference chain (Soon, Ng, and Lim,
2001). For instance, in the example shown in Figure 1.2, when generating the training
examples for the name “Yitzhak Eitan,” one would only generate a positive instance for
this being coreferent with “Gen,” and not with “commander” or “I.” This alleviates, to
some extent, the first problem with all pairs (namely that there are too many training
instances), but actually makes the second problem (biased training set) worse, since one
is now extracting far fewer positive instances, with no change in the number of negative
instances extracted.

One general problem with the binary classification scheme is that the reduction is not
exact: there are answers that can be given by the binary classifier that do not correspond
to any possible decision at the level of coreference chains. This is essentially a problem in
transitivity. Coreference chains, being essentially an equivalence class on mentions, must
be transitive: if m1 and m2 are coreferent and m2 and m6 are coreferent, then it must be
that m1 and m6 are coreferent. Unfortunately, the binary classifier that is treating each
pair independently has no knowledge of this constraint. It might be very happy to say
that the pair (m1, m2) is positive (they are coreferent), that the pair (m2, m6) is positive
(also coreferent) but that the pair (m1, m6) is negative. This gives rise to an impossible
set of constraints at the chain level.

There are essentially two approaches to solving this problem. The first is simply
to only ever apply the binary classifier to the most recent mention from each chain,
which will remove the problem of transitivity all together (Soon, Ng, and Lim, 2001;
Strube, Rapp, and Müller, 2002). Unfortunately, this choice also makes the problem
needlessly hard. For instance, in the example shown in Figure 1.2, this would mean that
in order to resolve the reference of the second instance of the word “helicopter,” one
would only compare it to the word “Apache” and not to the previous instance of the
word “helicopter.” Presumably the latter would be a much simpler link to make.

The second approach to solving the transitivity problem, which is appropriate only
when the classifier provides a numeric response rather than a class (which is the case for
all the classifiers I have discussed), is to use clustering techniques to build the chains.
Essentially, the responses produced by the classifier are transformed into similarities so
that positive examples have high “similarity” and negative examples have low “similar-
ity.” These similarities are then fed into a generic clustering algorithm and the resulting
clustering is used as the output of coreference resolution system (Aone and Bennett,
1995; Ng and Cardie, 2002; Cohen and Richman, 2002; Iida et al., 2003). One difficulty
with this approach is that the classifier is trained completely independently from the
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clustering model that will eventually be used, so it is difficult to know whether the loss
being optimized by the classifier is appropriate for the clustering algorithm. Moreover, to
tune both the classifier’s parameters and the clustering algorithm’s parameters through
cross-validation requires a non-trivial amount of re-computation to ensure unbiasedness.

5.2.2.2 Multilabel Classification

One can easily extend the binary classification scheme: rather than reducing the corefer-
ence problem to a binary classifier, one reduces it to a multiclass multilabel problem (i.e.,
a multiclass problem with multiple “correct” classes) (Florian et al., 2004; Luo et al.,
2004). The idea here is that for the nth mention in a document, one constructs a single
training instance over n-many classes. The first n − 1 classes correspond to each of the
previous mentions and the nth class corresponds to a “this is a new entity” class. From
an optimization perspective, this approach seems preferable to the binary classification
approach, since the number of training examples will no longer grow quadratically with
the number of mentions, and there is a much less significant bias problem.

When applied at test time, the multilabel classifier will produce probabilities that the
current mention is either a new entity or is coreferent with any of the previous mentions,
individually: p (mn is new) versus p (mn is coreferent with mk) for all k < n. Of course,
at this point one needs to combine all of this information in order to make a decision. For
instance, at the second occurrence of the word “helicopter” in Figure 1.2, the model might
say that there is a 60% chance this is coreferent with the first occurrence of “helicopter,”
a 20% chance it is coreferent with “Apache” and with the remaining 10% spread out
across the other options. In (Florian et al., 2004; Luo et al., 2004), the choice was made
that the probability of the new mention being in the “helicopter/Apache” cluster is the
maximum of the probabilities over the elements of that cluster. In this case, that would
mean that this has a probability of 60%.1 The clustering technique described by (Florian
et al., 2004; Luo et al., 2004) is based on a construction they term the Bell tree. The idea
is simply to perform a standard greedy beam search over coreference chains in a left to
right manner, where the score for an entire chain is simply the product of the probabilities
obtained as decisions are made along this chain.

Despite these differences from the binary classifier, this model still potentially suf-
fers from similar problems. The largest shortcoming is still that the model is trained
completely independently of the clustering algorithm (the Bell tree algorithm) used for
decoding the coreference chains. And since the classifier is still trained essentially by
looking at pairs, one cannot include features that span entire chains.

1This choice seems incredibly strange. From the calculus of probabilities, this should be computing by
summing. By taking the max, one is (a) throwing out information and (b) ending up with probabilities
that do not sum to 100%. It is perhaps from experimental observation that taking the max rather than
the sum performs better in practice, but it is not very well justified.
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5.2.2.3 Random Fields

One recent work that is very similar to the work described in this thesis is based on treat-
ing the coreference resolution problem in the conditional random field framework (McCal-
lum and Wellner, 2004). This framework identifies the coreference resolution problem with
graph partitioning, where the vertices are mentions and the graph is fully connected. A
partition is sought which maximizes a conditional probability expression. Unfortunately,
training weights to maximize the log likelihood in this model is intractable, so the alter-
native approach of using the structured perceptron is employed (see Section 2.2.3). In
this framework, the clustering algorithm used is a generic graph partitioning algorithm,
which can be shown to be equivalent to solving the problem of finding the coreference
sets with maximal probability. Unfortunately, graph partitioning is NP-complete, so an
approximate algorithm is used (Bansal, Chawala, and Blum, 2002). The algorithm works
by initializing the weights to zero, running the graph partitioning algorithm on training
instances until a mistake is made, and using a simple additive update on the weights.

Of all the systems presented to this point, this model is probably the least objection-
able from a theoretical perspective. It is unfortunate that so much information is lost
by going from the full CRF framework to the perceptron framework, and that there is
no “middle ground” that maintains tractability, but McCallum and Wellner’s model is
able to account for both the classification and clustering aspects of the problem through
the integration of the learning and the graph cut algorithm. In the same context, one
can employ a max-margin approach (Finley and Joachims, 2005), based on the SVMstruct

framework (Tsochantaridis et al., 2005).

5.2.2.4 Coreference Resolution Features

The classic features employed by coreference resolution systems focus on pairs of mentions;
see (Ng and Cardie, 2002; Luo et al., 2004) for two prototypical examples. The most
commonly computed features include: distance between the mentions (in terms of words,
sentences and paragraphs), information about whether either (or both) are pronominal,
information about whether the strings of the two mentions look “similar” (either exact
match, substring or string edit distance), information about whether they are definite
or demonstrative, information about whether they agree in terms of number, gender
or semantic class (typically resolved using WordNet (Fellbaum, 1998)), and information
about whether they appear in apposition to one another (for instance, “George Cantor,
a famous mathematician, . . . ”). Hobbs’ distance (Hobbs, 1976), or flat Hobbs’ distance,
attempts to assist with the resolution of pronouns by looking at dominance structure
in parse trees. Other approaches have attempted (without success) to use verb sub-
categorization information to assist in pronoun resolution (Kehler et al., 2004). All of
these features (and many more) will be discussed in the context of my coreference system
in Section 5.5.3.

5.2.3 Shortcomings

During the foregoing description of mention detection and coreference systems, I at-
tempted to point out individual flaws of various approaches. Here, I summarize some of
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the shortcomings of the previously described models, especially those that I attempt to
solve by applying Searn to the EDT problem. However, the majority of the discussion
of how these problems are solved will be relegated to the remainder of this chapter.

Pipelined Detection and Coreference: Without exception, all systems described
up to this point have solved the EDT task (or, in the case of the older models, the named
entity detection and coreference resolution task) in a pipelined fashion: first mentions are
identified with type, then these are grouped into chains. This separation of tasks forces
the mention detection phase to make many guesses it should not have to. For instance,
upon encountering the pronoun “it,” it is an incredibly difficult decision to decide on the
entity type of this mention. If this decision is made incorrectly, the subsequent step of
coreference resolution stands no chance of success. A similar argument can be made in
the case of unfamiliar names or roles. For instance, suppose there is a very uncommon
profession called a “flufferbugger” and one encounter a document which reads, “John Doe,
a famous flufferbugger, . . . .” Identifying the occurrence of “flufferbugger” as a person

is aided by the fact that one knows from syntactic cues that it is likely that this word is
coreferent with “John Doe,” but in order to be coreferent, you have to be an entity of
the same type. This effect has been alluded to by some research which has shown that
reranking candidate hypotheses from a mention detection model by a coreference model
can result in better performance (Ji and Grishman, 2004). However, it is very likely that
a model that can actually incorporate this knowledge in one step is going to outperform
any reranking system; see Section 2.2.9 for more details.

Weak Features: The features employed by the mention detection systems described
are only able to take advantage of local information. Linguistic studies of text struc-
ture have repeatedly shown though that there are clear dependencies between references
throughout an entire document (Morris and Hirst, 1991; Stairmand, 1996; Halliday and
Hasan, 1976), which is not yet captured by existing features. Furthermore, in the context
of coreference, the string-matching features proposed to date are somewhat adequate at
capturing name-to-name links, less adequate at capturing nominal-to-nominal links, and
horribly inadequate at any other sort of link. Pronoun-to-name is weakly captured by
distance-based functions, and, in some cases, through the implementation of the Hobbs’
distance, but this case still remains a problem. The name-to-nominal case is largely
ignored and further effort is necessary to solve this difficult aspect of the coreference
resolution task. Finally, all decisions in current coreference systems are made pair-wise:
features only ever talk about pairs of mentions. As I show empirically, it is very helpful
to be able to define features over larger sets of mentions.

Non-integrated Classification and Clustering for Coreference: Separating the
coreference problem into a classification (or distance metric learning) problem and a clus-
tering (or search) problem is appealing because we know how to solve these problems, but
it does not attend to the fundamental issue of learning in structured, highly interdepen-
dent domains. I have previously attempted to make some progress toward developing an
integrated model in a Bayesian framework (Daumé III and Marcu, 2005a); unfortunately,
the model proposed in that work is far too inefficient for practical purposes and it is
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unclear the extent to which it can deal with the largely overlapping features necessary to
build a full coreference system (or to integrate it with a mention detection model). It is
clear that to date, no one has built a model that allows for overlapping features, that is
fully integrated and that can be trained efficiently. This thesis provides such a model.

5.3 EDT Data Set and Evaluation

All the experiments described in this thesis are based on data from the Automatic Con-
tent Extraction (ACE) workshop sponsored by the National Institute of Standards and
Technology (NIST). Specifically, I use the 2004 training and evaluation corpora anno-
tated and released by the Linguistic Data Consortium (LDC). The training data contains
451 English documents, consisting of 220 broadcast news documents, 128 newswire doc-
uments, 37 documents translated from the Chinese Treebank, 58 documents translated
from the Arabic Treebank and 8 files from the Fisher telephone conversations set. Overall,
the data is drawn from a wide variety of sources, including: Agence France-Presse, New
York Times, Associated Press Newswire, Zaobao, An-Nahar, Al-Hayat, Nile TV, Voice
of America, Public Radio International, Cable News Network, American Broadcasting
Corporation, National Broadcasting Company, China National Radio, China Television
System, China Central TV, China Broadcasting System and Xinhua News Agency.

The evaluation criteria (loss functions) used for the EDT problem are quite complex.
This complexity is, to some degree, necessary. If one only cares about entity mention
detection (finding the mentions, but not performing coreference), then one can apply
F-measure loss as before (Eq (4.3)). Moreover, if one has access to correctly identified
entities, then one can score the coreference resolution alone by similar metrics; F-measure
is a reasonable choice here as well, though other measures may be more appropriate (Luo,
2005).

The primary difficulty with evaluating both mention detection and coreference simul-
taneously is that one desires a loss function that both corresponds to how useful the
system will be if deployed and is intuitively understandable. The metric used in the
ACE competitions is the “ACE metric,” defined formally by Doddington (2004a). This
metric is “entity centric” in the sense that it operates on an entity-by-entity basis (rather
than a mention-by-mention basis). At a high level, it operates as follows. One creates a
bipartite graph. In one partition is the set of reference entities. In the other partition is
the set of system entities. One attempts to find a matching between the reference entities
and system entities. Each match has a score, essentially reflecting how “compatible” the
entities are. The overall matching is computed to maximize this score.

The matching score is computed as follows. For a given entity discovered by the
system, one computes an entity value and a set of mention values (one mention value
for each mention of this entity). The entity value is based on (1) the type of the entity
(Person, Organization, etc.) and (2) whether it has a correspondence on the reference. If
(2) is not satisfied, a “false alarm” penalty is incurred. The mention value is computed
the same way as the entity value, but based on mention types rather than entity types.
Mentions lacking correspondences in the reference document incur both a false alarm
penalty and a coreference penalty. The score for a given entity is the product of its entity
value with the sum of the mention values.

71



5.4 Entity Mention Detection

Before applying Searn to the full EDT problem, I will apply it individually to the entity
mention detection (EMD) and coreference resolution problems. To apply Searn to the
entity mention detection (EMD) problem, one is required to specify two components: the
search space (and corresponding actions) and the features. These two are inherently tied,
since the features rely on the search space, but for the time being I ignore the issue of
the feature functions and focus on the search.

5.4.1 Search Space and Actions

Like the sequence labeling case (Section 4.3), for the entity mention detection problem, I
structure search in a left-to-right decoding framework: a hypothesis is a complete identifi-
cation of the mentions for an initial segment of a document. For instance, on a document
with N words, a hypothesis that ends at position 0 < n < N is essentially what you
would get if you took the full structured output for this output and chopped it off at
word n. In the example given in the introduction, one hypothesis might correspond to
“Bill Clinton gave a” (which has no loss thus far), or to “Bill Clinton gave a” (which has
made two errors).

A hypothesis is expanded through the application of the search actions. In this case,
the search procedure first chooses the number of words it is going to consume (for instance,
to form the mention “Bill Clinton,” it would need to consume two words). Then, it
decides on an entity type and a mention type (or it opts to call this chunk not an entity
(NAE), corresponding to non-underlined words). This is the chunk-at-a-time search style
described in Section 4.3.2. All these decisions are made simultaneously, and the given
hypothesis is then scored. I restrict that a NAE may only consume a single word.

5.4.2 Optimal Policy

Computing an optimal policy step for the entity mention detection problem is roughly
the same as the computation for the chunking problem (Section 4.1.3). However, the loss
function for EMD is, in some ways, simpler than F1 measure. Essentially, each extraneous
entity incurs a weighted loss, while each missed entity incurs a weighted loss. These are
simply combined linearly.

As in the chunking problem, the optimal policy for EMD is as follows. If we are at
a position where the true output exactly specifies what to do next: do it (i.e., if we are
at the beginning of an entity, or outside of one). Otherwise, we are at a position that is
internal to a true entity; in this case, we should simply skip via “outs” until the end of
the entity. While nearly correct, there is a small caveat to this policy. According to the
ACE metric, one can miss an entity by a percentage of the total number of characters
and still received credit. It would be straightforward to extend this optimal policy to
take this complication into account, but I do not do so.

Computing the optimal approximation score for EMD is equally easy: it is simply
the loss accumulated up to the given point (with, perhaps, an additional component if
we wind up inside a true entity that we cannot create). Since the ACE score is additive
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over the output, we need not consider any future decisions for computing the optimal
approximation score.

5.4.3 Feature Functions

All the features I consider are of the form base-feature × decision-feature, where base
features are functions of the input and decisions are functions of the hypothesis. For
instance, a base feature might be something like “the current chunk contains the word
‘Clinton’” and a decision feature might be something like “the current chunk is a named
person.”

5.4.3.1 Base Features

For pedagogical purposes and to facilitate model comparisons, I have separated the base
features into eleven classes: lexical, syntactic, pattern-based, semantic, knowledge-based,
class-based, list-based, inference-based features and history-based features. I discuss with
each of these in turn. Finally, I discuss how these base features are combined into meta-
features that are actually used for prediction.

Lexical features. The class of lexical features contains simply computable features of
single words. This includes: the number of words in the current chunk; the unigrams
(words) contained in this chunk; the bigrams; the two character prefixes and suffixes;
the word stem (according to the Porter stemmer (Porter, 1980)); the case of the word,
computed by regular expressions like those given by (Bikel, Schwartz, and Weischedel,
1999); simple morphological features (number, person and tense when applicable); and, in
the case of coreference, pairs of features between the current mention and an antecedent.

Syntactic features. The syntactic features are based on running the joint part-of-
speech tagger and syntactic chunker described in Section 4.1.4 on the data. The syntactic
features include unigrams and bigrams of part of speech as well as unigram chunk features.
I do not use any parsing for this task.

Pattern-based features. I include a whole slew of features based on lexical and part
of speech patterns surrounding the current word. These features include: eight hand-
written patterns for identifying pleonastic “it” and “that” (as in “It is raining” or “It
seems to be the case that . . . ”); identification of pluralization features on the previous
and next head nouns (this is intended to help make decisions about entity types); the
previous and next content verb (also intended to help with entity type identification); the
possessor or possessee in the case of simple possessive constructions (“The president ’s
speech” would yield a feature of “president” on the word “speech”, and vice-versa; this
is indented to be a of weak sub-categorization principle); a similar feature but applied to
the previous and next content verbs (again to provide a weak sort of sub-categorization).

Semantic features. The semantic features used are drawn from WordNet (Fellbaum,
1998). These include: the two most common synsets from WordNet for the all words in
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the chunk; all hypernyms of those synsets. Finally, I include the synset and hypernym in-
formation of the preceding and following verbs, again to model a sort of sub-categorization
principle.

Class-based features. The class-based features I employ are designed to get around
the sparsity of data problem while simultaneously providing new information about word
usage. The first class-based feature I use is based on word classes derived from the
web corpus mentioned earlier and computed as described by (Ravichandran, Pantel, and
Hovy, 2005). The second attempts to instill knowledge of collocations in the data; I use
the technique described by (Dunning, 1993) to compute multi-word expressions and then
mark words that are commonly used as such with a feature that expresses this fact.

List-based features. I have gathered a collection of about 40 lists of common places,
organization, names, etc. These include the standard lists of names gathered from census
data and baby name books, as well as standard gazetteer information listing countries,
cities, islands, ports, provinces and states. I supplement these standard lists with lists of
airport locations (gathered from the FAA) and company names (mined from the NASDAQ
and NYSE web pages). I additionally include lists of semantically plural but syntactically
singular words (e.g., “group”) which were mined from a large corpus by looking for
patterns such as (“members of the . . . ”). Finally, I use a list of persons, organizations and
locations that were identified at least 100 times in a large corpus by the BBN IdentiFinder
named entity tagger (Bikel, Schwartz, and Weischedel, 1999).

Inference-based features. The inference-based features are computed by attempting
to infer an underlying semantic property of a given mention. In particular, I attempt
to identify gender and semantic number (e.g., “group” is semantically plural although
it is syntactically singular). To do so, I created a corpus of example mentions labels
with number and gender, respectively. This data set was automatically extracted from
our EDT data set by looking for words that corefer with pronouns for which I know
the number or gender. For instance, a mention that corefers with “she” is known to be
singular and female, while a mention that corefers with “they” is known to be plural.
In about 5% of the cases, this was ambiguous – these cases were thrown out. I then
used essentially the same features as described above to build a maximum entropy model
for predicting number and gender. Additionally, I use several pre-existing classifiers as
features. These are simple maximum entropy Markov models trained off of the MUC
data (Grishman and Sundheim, 1995; Chinchor, 1997).

History-based features. Finally, I include features having to do with long-range de-
pendencies between words. For instance, if at the beginning of the document we tagged
the word “Arafat” as a person’s name (perhaps because it followed “Mr.” or “Palestinian
leader”), and later in the document we again see the word “Arafat,” we should be more
likely to call this a person’s name, again. Such features have previously been explored
in the context of information extraction from meeting announcements using conditional
random fields augmented with long-range links (Sutton and McCallum, 2004), but the
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Figure 5.3: ACE scores on the mention detection task for all ACE 2004 systems as well
as my Searn-based system.

Searn framework makes no Markov assumption, so there is no extra effort required to
include such features.

5.4.3.2 Decision Features

The decision features are divided into two classes: simple decision features and boundary
decision features.

Simple. The simple decision features include: is this chunk tagged as an entity; what
is its entity type; what is its entity subtype; what is its mention type; what is its entity
type/mention type pair.

Boundary. The boundary decision features include: the second and third order Markov
features over entity type, entity subtype and mention type; features appearing at the
previous (and next) words within a window of three; the words that appear and the
previous and next mention boundaries, specified also by entity type, entity subtype and
mention type.

5.4.4 Experimental Results

In Figure 5.3, I show the ACE scores of the top four systems that competed at the ACE
2004 evaluation workshop (Sys1 through Sys7) as well as the scores for the Searn-based
system. The Searn system achieves a score of 86.8, roughly halfway between the first
and second best ACE 2004 system (with scores of 87.2 and 85.7, respectively). It is worth
noting that the two best performing ACE 2004 systems were trained on extra in-house
data, thus rendering absolute comparisons difficult.
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5.4.5 Error Analysis

One advantage to the Searn framework is that error analysis is comparatively easy. One
can simply observe, for each individual decision, which errors are most common. Or,
perhaps more usefully, which errors lead to the greatest increase in loss. As it turns out,
the majority of the loss in the current system comes from mis-segmentation, followed by
entity type mis-identifications and lastly mention type mis-identifications. Roughly 78%
of the loss suffered by the EMD system is due to segmentation errors, followed by 14%
for entity type mis-identifications and 8% for mention type.

A common segmentation error is the following. In the sentence beginning “The United
Nations Relief and Works Agency for Palestinian Refugees ( UNRWA ) made an urgent
appeal today,” the correct segmentation is to identify that the nine word phrase beginning
with “United” and ending with “Refugees” is a single entity of type organization. The
current model misidentifies this as three separate entities: “United Nations Relief” (an
organization), “Works Agency” (an organization) and “Palestinian Refugees” (a person).
Errors such as this are common, especially with very long entity names. It seems rea-
sonable that one could add specific conjunction features to enable the model to correctly
identify “United Nations Relief and Works Agency” as a single organization, but adding
in “for Palestinian Refugees” seems difficult. This is especially difficult because the fol-
lowing abbreviation (“UNRWA”) does not include any letters for “Palestinian Refugees”,
which implies that performing coreference simultaneously is unlikely to remedy this error.

With respect to missed mentions, the model currently errs most frequently on nom-
inals. For instance, a common missed example is the organization nominal mention
“auto-maker” in the segment “. . . Goldman Sachs downgraded the German auto-maker
after . . . ” For the most part, if nominal mentions are observed in the training data, the
model will correctly learn to spot them. However, such strings are quite productive and
many new examples are seen regularly. Improved performance on this task may require
better clustering technology to identify when new nominal mentions are observed.

5.5 Coreference Resolution

For the pure coreference resolution problem, the (unrealistic) assumption is that all men-
tions have been correctly identified and all one needs to do is group them into coreference
classes. In this section, I explore the application of Searn to this problem.

5.5.1 Search Space and Actions

The search procedure I use for the coreference resolution task is, like the mention detection
search procedure in Section 5.4.1, structured in a left-to-right fashion. I assume that we
are given all the mentions already tagged and that they have been assigned the correct
mention types and entity types (with the small exception that the entity type for pronouns
is not given: this would make the task too simple). Like the mention detection case, a
hypothesis is formed by assigning coreference chains to the first k mentions. A given
hypothesis is extended by assigning the (k + 1)st mention to a coreference chain, be it a
new chain or one that appears before.
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One significant issue that arises in the context of assigning a hypothesis to a corefer-
ence chain is how to compute features over that chain. As I discuss in Section 5.5.3, the
majority of our coreference-specific features are over pairs of chunks: the proposed new
mention and an antecedent. However, since a proposed mention can have well more than
one antecedent, one is left with a decision about how to combine this information.

The first, most obvious solution, is to essentially do nothing: simply compute the
features over all pairs and add them up as usual. This method, however, intuitively has
the potential for over-counting the effects of large chains. To compensate for this, one
might advocating the use of an average link computation, where the score for a coreference
chain is computed by averaging over its elements. One might also consider a max link or
min link scenario, where one of the extrema is chosen as the value. Other research has
suggested that a simple last link, where a mention is simply matched against the most
recent mention in a chain might be appropriate, while first link might also be appropriate
because the first mention of an entity tends to carry the most information.

In addition to these standard linkages, I also consider an intelligent link scenario,
where the method of computing the link structure depends on the mention type. The
intelligent link is computed as follow, based on the mention type of the current mention,
m:

If m =NAM then: match first on NAM elements in the chain; if there are none, match
against the last NOM element; otherwise, use max link.

If m =NOM then: match against the max NOM in the chain; otherwise, match against
the last NAM; otherwise, use max link.

If m =PRO then: use average link across all PRO or NAM; if there are none, use max
link.

The construction of this methodology was guided by intuition (for instance, matching
names against names is easy, and the first name tends to be the most complete) and
subsequently tuned by experimentation on the development data. One might consider
learning the best link method, and this may result in better performance, but I have not
explored this option to date. The initial results I present are based on using intelligent
link, but I also compare the different linkage types explicitly (see Section 5.5.4).

5.5.2 Optimal Policy

Computing an optimal policy step for coreference resolution is significantly more difficult
than for entity mention detection (or any of the other problems discussed thus far). To
see why, consider Figure 5.4 (easier to view in color). In this figure, I have drawn two
versions of a document: one with the true coreference links (on the top) and a partial
hypothesis (on the bottom). Circles correspond to mentions and their coloring/labeling
corresponds to coreference decisions. For example, the first three mentions are linked
together in the true output (“A”), as is the 7th mention. In the hypothesis output, an
error is made with the second mention (which was said to create a new entity, when in
fact it should have been linked to the first) and the fourth mention (as well as others).
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Figure 5.4: Running example for the computation of the optimal policy step for the
coreference task.

Consider now attempting to make an optimal decision for the 7th mention: the “cur-
rent position.” We must decide that this is coreferent with cluster 1, cluster 2, cluster
3 or a new cluster. It is clear that it will never be optimal to say that it is coreferent
with cluster 3. Moreover, it is actually the case that we will never say that this is a new
entity either: this is because doing so will never be better than saying it is coreferent
with cluster 2. However, under different circumstances, the other two options are both
reasonable:

Cluster 1: If mention 4 (the “incorrect” entity in cluster 1) is of low weight, then attach-
ing the current mention to cluster 1 will be the right thing to do (the error incurred
by the previous mistake will not count against us significantly). Alternatively, if
mention 4 is of very high weight, and there are many high-weight “B” mentions
later in the document, then it may be worthwhile to link the new mention into
cluster 1 with the goal of then linking in all the remaining “B” clusters to enable
cluster “1” to match to “B” (instead of “A”).

Cluster 2: Suppose mentions 1, 3 and 4 all have low weight. Further, suppose that
cluster “A” has 100 more mentions laster in the document (and not pictured in the
Figure). In this case, it will be preferable to “give up” on the current entity (cluster
1) and begin (nearly) from scratch with cluster 2.

This qualitative analysis shows that choosing an optimal policy step is intuitively
difficult. The difficulty lies in the fact that the ACE scoring function is a combinatorial
optimization problem itself, based on bipartite matching. This makes the choice of the
best-next-action difficult because it strongly depends on future decisions. In fact, there
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exist exceptionally difficult cases, for which it appears necessary to compute an expo-
nential number of possibilities.2 Fortunately, there are approximate loss functions that
behave very similarly to the ACE metric that are efficiently optimizable.

The approximate loss function I use for solving the coreference problem is based on
removing the bipartite matching step from the ACE metric. That is, instead of using
matching to decide which hypothesis entities link to which true entities, I allow the coref-
erence module to make this decision itself. This small change makes it straightforward
to compute scores for each of the two options for the current position in Figure 5.4.

The computation proceeds as follows. We assume that however we link m7, it will
end up matching with “A” (i.e., with its true cluster). Now the question simply becomes:
of all the links we consider (in the example, linking to “1” or linking to “2”), which will
give the higher score for this entity. This is also simple to compute. For linking to “1”,
we will get credit for mentions 1, 3 and 7 but will incur a false-alarm penalty for mention
4 and a miss penalty for mention 2. For linking to 2, we will get credit for mentions 2
and 7 but will incur miss penalties for mentions 1 and 3. Each of these credits/penalties
will have a weight which we can compute based only on the mentions themselves, and we
simply sum. This leads to two scores, which can be compared. The greater score is the
choice made by this (approximately) optimal policy. In general, this computation will
need to be made once for each hypothesis class that intersects with the true class of the
current position, and each of these computations will involve as many mentions as are in
the union of these sets. In the worst case, this will be O(m2), where m is the current
position, but in practice it is quite efficient.

5.5.3 Feature Functions

As in the EMD case, features are broken into base-features and decision-features. These
are described separately. Many are replicated from the EDT task and simply applied in
a pair-wise fashion over elements of the chains. I additionally add three new classes of
base-features: count-based, knowledge-based and string match features.

5.5.3.1 Base Features

The base features include most of those described in Section 5.4.3.1, but applied over
pairs. For instance, with the base lexical feature (which looks at word identity), we
would extend this to look at, for instance, the word pair “Clinton” and “president,” a
feature which would one would expect to have fairly high weight when paired with the
“is coreferent” decision feature.

Lexical features. These features are identical to the EMD case.

Syntactic features. These features are identical to the EMD case.

2This leads me to believe that this problem may be formally hard; unfortunately, at this time, I do
not know of a reduction from a problem in NP. This is an open question, but perhaps an unimportant
one.
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Pattern-based features. In addition to the features described in the EMD model, I
include a list of part of speech and word sequence patterns that match up to four words
between nearby mentions that are either highly indicative of coreference (e.g., “of,” “said,”
“am” “, a”) or highly indicative of non-coreference (e.g., “’s,” “and,” “in the,” “and the”).
This last set was generated by looking at intervening strings and finding the top twenty
that had maximal mutual information with the class (coreferent or not coreferent) across
the training data.

Count-based features. The count-based features apply only to the coreference task
and attempt to capture regularities in the size and distribution of coreference chains.
These include: the total number of entities detected thus far; the total number of men-
tions; the entity to mention ratio; the entity to word ratio; the mention to word ratio;
the size of the hypothesized entity chain; the ratio of the number of mentions in the
current entity chain to the total number of mentions; the number of intervening mentions
between the current mention and the last one in our chain; the number of intervening
mentions of the same type; the number of intervening sentence breaks; the Hobbs distance
computed over syntactic chunks; and the “decayed density” of the hypothesized entity,
which is computed as

∑

m=e 0.5d(m)/
∑

m 0.5d(m), where m ranges over all previous men-
tions (constrained in the numerator to be in the same coreference chain as our mention)
and d(m) is the number of entities away this mention is. This final feature is intended
to capture the notion that some entities are referred to consistently across a document,
while others are mentioned only for short segments, but it is relatively rare for an entity
to be mentioned once at the beginning and then ignored again until the end.

Semantic features. In addition to the semantic features described for EMD, I also
consider the distance in the WordNet graph between pairs of head words (defined to be
the final word in the mention name) and whether one is a part of the other. Finally, I
include the synset and hypernym information of the preceding and following verbs, again
to model a sort of sub-categorization principle.

Knowledge-based features. Based on the hypothesis that many name to nominal
coreference chains are best understood in terms of background knowledge (for instance,
that “George W. Bush” is the “President”), I have attempted to take advantage of recent
techniques from large scale data mining to extract lists of such pairs. In particular, I
use the name/instance lists described by (Fleischman, Hovy, and Echihabi, 2003) and
available on Fleischman’s web page to generate features between names and nominals
(this list contains ... pairs mined from ... words of news data). Since this data set tends
to focus mostly on person instances from news, I have additionally used similar data
mined from a 138 gigabyte web corpus, for which more general “ISA” relations were
mined (Ravichandran, Pantel, and Hovy, 2005).

Class-based features. I use identical features to the EMD model.

List-based features. In addition to those features described in the EMD model, for
coreference, we look for word pairs that appear on the same list but are not identical (for
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instance, “Russia” and “England” appearing on the “country” list but not being identical
hints that they are different entities). Finally, I look for pairs where one element in the
pair is the head word from one mention and the other element in the pair is a list. This
is intended to capture the notion that a word that appears on the “country list” is often
coreferent with the word “country.”

Inference-based features. I use identical features to the EMD case.

String match features. I use the standard string match features that are described in
every other coreference paper. These are: string match; substring match; string overlap;
pronoun match; and normalized edit distance. In addition, we also use a string nation-
ality match, which matches, for instance “Israel” and “Israeli,” “Russia” and “Russian,”
“England” and “English,” but not “Netherlands” and “Dutch.” This is done by checking
for common suffixes on nationalities and matching the first half of the of the words based
on exact match. I additionally use a linguistically-motivated string edit distance, where
the replacement costs are lower for vowels and other easily confusable characters. I also
use the Jaro distance as an additional string distance metric (Jaro, 1989; Jaro, 1995).
Finally, I attempt to match acronyms by looking at initial letters from the words in long
chunks.

5.5.3.2 Decision Features

The coreference decision features include the following: is this entity the start of a chain or
continuing an existing chain; what is the entity type of this started (or continued) chain;
what is the entity subtype of this started (or continued) chain; what is the mention type
of this started chain; what is the mention type of this continued chain and the mention
type of the most recent antecedent.

5.5.4 Experimental Results

In Figure 5.5, I plot the ACE scores of the three ACE 2004 systems that competed in the
coreference-only subtask, one baseline system that operates by matching mention heads
(the final words of each mention), and my Searn-based system. My system performs
significantly better than the baseline and Sys5, slightly better than Sys1 and worse than
Sys2. However, it should be noted that Sys1 and Sys2 annotated extra data, so explicit
comparisons are difficult.

As stated in the previous section, the coreference-only task with intelligent link
achieves an ACE score of 89.1. The next best score is with min link (88.7) followed
by average link with a score of 88.1. There is then a rather large drop with max link to
86.2, followed by another drop for last link to 83.5 and first link performs the poorest,
scoring 81.5. These results are depicted in Figure 5.6.

5.5.5 Error Analysis

Error analysis for coreference resolution is a difficult endeavor, primarily because it is
challenging to define classes of errors that can be easily counted. One way of looking at
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Figure 5.5: ACE scores on the coreference subtask for the three ACE 2004 systems that
competed in this subtask, one baseline, and the Searn-based system.

the coreference errors is to first compute the matching, as defined by the ACE evaluation
metric (Section 5.3) and then inspect what types of entities are not in their correct
clusters.

According to this evaluation, from the perspective of which entity types cost the
most, roughly 20% of the loss came from entities each of type person, organization and
GPE. 14% can from weapons and 10% from facilities. The remaining loss was split
roughly equally between vehicles and locations. One can also compute these numbers
by count, rather than by loss (recall that the ACE metric favors different entity types).
By count, 25% of the errors were on each of vehicles and weapons, 18% on people and
the remainining error split roughly evenly between the other classes. As this shows, the
fact that I have focused away from vehicles and weapons because they are relatively
uncommon and have low weight has significantly affected the performance of the system
on these types.

One can also evaluate the performance on the basis of the sizes of the entity sets. That
is: when errors are made, are they made on singleton entities or large entities. Somewhat
surprisingly, there is not a strong bias. 17% of the errors is on singleton entities, 18%
on doubletons, 22% on entites with 3-4 mentions, 23% on entities with 5-8 mentions and
20% on entities with more than eight mentions.

An alternative way of dividing up errors is by treating the coreference problem as
a binary classification problem. This enables us to evaluate the success of the model
on incremental decisions. In Table 5.3, I show the percentage of errors broken down by
mention type. For instance, the upper right cell in any of the four tables is the percentage
of errors that were made on a name-to-name link (where the reference was a name and the
proposed antecedent was also a name). The left tables show the raw percentages; the right
tables normalize these numbers by frequency of the true mention types (that is, pronouns
are comparatively rare, so on a percentage basis, the system makes more pronoun errors
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Figure 5.6: Comparison of different linkage types on the coreference task.

than is obvious from the left-most tables). The top tables show the performance of the
system without the knowledge-based features; the bottom tables show the performance
with these features.

As we can see, the majority of the errors without the knowledge-based features are
name-to-nominal (10%), nominal-to-name (8%) and pronoun-to-anything. Once the
knowledge-based features are added, the name-to-nominal errors drop to only 8% and
the nominal-to-name errors drop to 6.6%. At this point, the only significant error source
is with pronouns.

5.6 Joint Detection and Coreference

Merging the model described for entity mention detection (Section 5.4) and the model
for coreference resolution (Section 5.5) into a single joint model is, in fact, a rather trivial
change. The triviality of this change is one of the significant advantages of working
withing the Searn framework.

5.6.1 Search Space and Actions

The search space and search operations for the joint EDT model simply merges those
for the corresponding halves of the problem. Again, we decode in a left-to-right manner,
where a hypothesis represents a complete decision for an initial segment of a document.
As in the EMD model, a hypothesis is extended by first choosing a number of words, then
choosing an entity type and mention type. The difference in the joint model is that after
the types are selected, we also select (as in the coreference model) the chain to which we
wish to link this mention (so long as it is not “not an entity”).

83



WITHOUT KNOWLEDGE-BASED FEATURES
Error Percentage Normalized by Frequency

Ante \ Ref NAM NOM PRO

NAM 6.2% 11.6% 12.5%
NOM 15.2% 9.7% 12.8%
PRO 10.9% 7.9% 13.3%

Ante \ Ref NAM NOM PRO

NAM 5.8% 7.9% 16.3%
NOM 10.4% 4.1% 11.9%
PRO 16.1% 8.9% 18.7%

WITH KNOWLEDGE-BASED FEATURES
Error Percentage Normalized by Frequency

Ante \ Ref NAM NOM PRO

NAM 6.6% 9.9% 13.4%
NOM 12.0% 10.3% 13.7%
PRO 11.6% 8.4% 14.1%

Ante \ Ref NAM NOM PRO

NAM 6.1% 6.6% 17.0%
NOM 8.0% 4.3% 12.5%
PRO 16.8% 9.3% 19.5%

Table 5.3: Coreference errors evaluated on a mention-type basis.

5.6.2 Optimal Policy

As discussed in Section 5.4.2, the optimal policy for the mention detection problem is
straightforward to compute. Unfortunately, as discussed in Section 5.5.2, the optimal
policy for the coreference problem is very difficult to compute. Thus, for coreference, an
approximation was advocated. Based on this observation, we use a similar approximation
for computing the optimal policy for the full EDT task. This is derived by simply com-
bining the optimal policies for the two subtasks. That is, first we take a step according
to the mention detection optimal policy, then, so long as this step created a mention, we
take a step according to the coreference optimal policy.

The only complication is that when taking a coreference step, it is not necessarily
the case that previous mentions have been correctly identified. For instance, consider
Figure 5.4. When the policy arrives at mention 7, it may be that, for instance, all of the
preceding “A” mentions were missed. Or, alternative, there many be extraneous mentions
in the hypothesis that do not correspond to any mention in the true output.

It is straightforward to derive the optimal decision, even in light of these two compli-
cations. First, notice that it is never optimal to decide a mention is coreferent with an
entity comprised solely of spurious mentions. Next, note that any missing mentions may
be ignored: they will neither help nor hinder the score. Thus, we may make coreference
decisions exactly as in Section 5.5.2, where any missed mentions are ignored in the score
computation and any wholly spurious entities are also ignored.

5.6.3 Experimental Results

The results on the full EDT task are shown in Figure 5.7, again compared against all
competing ACE 2004 systems. As one can see from these results, our EDT model is on par
with the first and second best systems (again, Sys1 annotated extra data). The differences
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Figure 5.7: ACE scores on the full EDT task for all ACE 2004 system, and my Searn-
based joint system.

between the Searn-based system and the top three other systems are not statistically
significant at the 95% level, though the difference to system S4 is statistically significant.

In Figure 5.8, I show the same results as in Figure 5.7, but with an additional column
for running Searn in a pipelined manner. That is, first mention detection is run; then
coreference is run on top. Both of these sytems are trained separately (and the coreference
module is trained on the output of the mention detection module). As we can see from
these results, but not running jointly, the Searn-based system falls to a solid fifth place,
rather than being tied for first.

To further show the usefulness of the joint decoding, I also consider using the joint
system to perform the simple mention detection task. That is, I run the full joint EDT
system, but then throw out the coreference links. This enables us to determine if coref-
erence information is useful for the plain mention detection task. When run in pipelined
mode (i.e., mention detection only), the Searn-based system achieves a score of 86.8,
as shown in Figure 5.3. When run in pipelined mode, Searn achieves a score of only
87.1, tightly closing the gap to the best mention detection system (Sys1, with a score
of 87.2). Thus, running jointly makes the difference between a system that is (roughly)
tied for first place among competing systems and one that is strongly in fifth place. This
difference is largely due to two factors. First, some decisions (such as entity type) are
easy to make in a joint system. Second, and perhaps more importantly, the coreference
module is trained with respect to the errors the mention detection system will make when
applied. This allows the two components to trade off errors against one another.

5.7 Discussion and Conclusions

In this chapter, I applied the Searn framework to the entity detection and tracking task.
Searn is an excellent choice for this problem, due to the fact that many relevant features
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Figure 5.8: ACE scores on the full EDT task for all ACE 2004 system, my Searn-based
joint system and a pipeline version of my Searn-based system.

for the coreference task (and even for the mention detection task) are highly non-local.
This non-locality makes models like Markov networks intractable, and Searn provides
an excellent framework for tackling this problem. I have introduced a large set of new,
useful features for this task, most specifically the use of knowledge-based features for
helping with the name-to-nominal problem, which has led to a substantial improvement
in performance. I have shown that performing joint learning for mention detection and
coreference results in a better performing model that pipelined learning. I have also
provided a comparison of the contributions of our various feature classes and compared
different linkage types for coreference chains. In the process, I have developed an efficient
model that is competitive with the best ACE systems.

Despite these successes, the learned model is not perfect: the largest source of error
is with pronouns. This is masked by the fact that the ACE metric weights pronouns low,
but a solution to the EDT problem should handle pronouns well. Future work involves
the exploration more complex features for resolving pronouns, and to incorporating these
features into the current model.
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Chapter 6

Multidocument Summarization

Multidocument summarization is the task of creating a summary out of a collection of
documents on a focused topic. In query-focused summarization, this topic is given ex-
plicitly in the form of a user’s query. The dominant approach to the multidocument sum-
marization problem is sentence extraction: a summary is created by greedily extracting
sentences from the document collection until a pre-defined word limit is reached. Teufel
and Moens (1997) and Lin and Hovy (2002) describe representative examples. Current
winning systems in the Document Understanding Conference (which has focused recently
on 250 word summaries) are based nearly entirely on sentence extraction techniques, with
a minor amount of pre- and post-processing (Dang, 2005; Daumé III and Marcu, 2005b).
Unfortunately, the granularity of sentence extraction systems is often inadequate for pro-
ducing short summaries of large document sets. Recent work in sentence compression
(Knight and Marcu, 2002; Riezler et al., 2003; Turner and Charniak, 2005; McDonald,
2006a) and document compression (Daumé III and Marcu, 2002) attempts to take small
steps beyond sentence extraction. Compression models can be seen as techniques for ex-
tracting sentences then dropping extraneous information. They are more powerful than
simple sentence extraction systems, while remaining trainable and tractable.

One significant difficulty with these sentence compression models is that their training
hinges on the existence of 〈 sentence, compression 〉 pairs, where the compression is
obtained from the sentence by only dropping words and phrases (the work of Turner and
Charniak (2005) is an exception). Obtaining such data is quite challenging, especially in
arbitrary domains. Due to this, most of the previous work on the sentence compression
problem evaluates on a corpus of product reviews from Ziff-Davis, which was originally
collected by Knight and Marcu (2002). The difficulty of obtaining explicit training data
for training sentence compression (or document compression) models leads us to desire
training techniques that do not require such data.

6.1 Vine-Growth Model

In this section, I introduce the vine-growth model for multidocument summarization.
For now, I ignore the issue of evaluation criteria (see Section 6.3) and training (see
Section 6.4). Like most previous work on sentence compression, the vine-growth model
makes use of the syntactic structure of the sentences to be compressed. However, unlike
most previous work (see McDonald (2006a) for an exception), the vine-growth method
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Figure 6.1: The dependency tree for the sentence “The man ate a sandwich with pickles”.

uses dependency structures instead of constituent structures. An example dependency
tree for the sentence “The man ate a sandwich with pickles” is shown in Figure 6.1.1

There are several advantages to working with dependency trees rather than con-
stituent trees. Most importantly, dependency trees allow for easy lexicalization, which
seems important in a summarization task. Moreover, the dependency tree structure makes
clear the relationship between the words in a sentence; this is not the case for constituent
trees. Similar arguments for dependency structures in lieu of constituent structures have
been made for machine translation systems as well (Quirk, Menezes, and Cherry, 2005).

The vine-growth model produces compressions of documents by simultaneously se-
lecting and compressing sentences. The assumption made in the compression model is
that if a word w is to be included in the summary, then all words that w depends on
should also be included. In the language of trees, all ancestors of w should be included.
For instance, if one decides that the word “pickles” should be included in a summary
of the sentence from Figure 6.1, then one is forced to also include the words “ate” and
“sandwich” in the summary. This is, intuitively, a reasonable requirement, though see
Section 6.7 for an analysis of exceptions. Though not strictly necessary, in order to
produce more grammatical summaries, the model requires that all closed class children
(determiners, prepositions, modals and punctuation) of summary words are also included
(e.g., we could not include “man” without also including “the” and we could not include
“pickles” without also including “with”).

Under this model, the set of valid summaries of the sentence from Figure 6.1 are:

1. ate

2. The man ate

3. ate a sandwich

4. ate a sandwich with pickles

1For all experiments described in this chapter, I have used an in-house implementation of Collins’ Model
II parser (Collins, 2003) and hand-written head-finding rules also due to Collins. The implementation of
the parser is due to Radu Soricut.
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Figure 6.2: An example of the creation of a summary under the vine-growth model.

5. The man ate a sandwich

6. The man ate a sandwich with pickles

Half of these possible summaries are grammatical (including the “non-summary” that
includes the entire sentence). Two (“The man ate” and “The man ate a sandwich”) are
reasonable summaries. The goal of learning will be to find these reasonable summaries
on the basis of training data.

6.2 Search Space and Actions

The Searn algorithm I employ for implementing the vine-growth model is based on
incrementally growing summaries. In essence, beginning with an empty summary, the
algorithm incrementally adds words to the summary, either by beginning a new sentence
or growing existing sentences.

More formally, the algorithm maintains a set of summary nodes and a set of frontier
nodes. The set of summary nodes is initialized to be empty, and the set of frontier nodes
is initialized to the set of the head words of each sentence. In each step of search, a
single frontier node is selected and added to the summary (together with any closed class
children). All other children of this newly-added node are then added to the frontier.

To see more clearly how the vine-growth model functions, consider Figure 6.2. This
figure shows a four step process for creating the summary “the man ate a sandwich .”
from the original document sentence “the man ate a big sandwich with pickles .” In this
figure, frontier nodes are colored yellow and summary nodes are colored green; all other
nodes are gray. The algorithm proceeds as follows:

1. In the initialization, the root word (“ate”) is marked as a frontier node.

2. In the first step, the frontier node “ate” is added to the summary and colored
green. Since the period is punctuation and is a child of “ate” it is also added to
the summary. The remaining children—“man” and “sandwich”—are added to the
frontier.
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Number: d324e

Title: Argentine British relations post Falkland War

Narrative: How have relations between Argentina and Great Britain developed since

the 1982 war over the Falkland Islands? Have diplomatic, economic, and

military relations been restored? Do differences remain over the status of

the Falkland Islands?

Figure 6.3: An example query from the DUC 2005 summarization corpus.

3. In the second step, the word “man” is added to the summary and its closed-class
child (“the”) is also added. It has no other children, so no new words are added to
the frontier.

4. Finally, the frontier node “sandwich” is selected and added to the summary along
with its closed-class child (“a”). Its remaining children—“big” and “pickles”—are
added to the frontier.

Note that steps 3 and 4 are interchangeable: from the perspective of the summary
produced, these steps could occur in any order.

When there is more than one sentence in the source documents, the search proceeds
asynchronously across all sentences. When the sentences are laid out adjacently, the end
summary is obtained by taking all the green summary nodes once a pre-defined word limit
has been reached. This final summary is a collection of subtrees grown off a sequence of
underlying trees: hence the name “vine-growth.”

6.3 Data and Evaluation Criteria

For data, I use the DUC 2005 data set (Dang, 2005). This consists of 50 document
collections of 25 documents each (average document length is about 700 words); each
document collection includes a human-written query. An example query is shown in
Figure 6.3. Each document collection additionally has five human-written “reference”
summaries (250 words long, each) that serve as the gold standard. The “best” human
summary (in the sense that it is most like the others) for the query shown in Figure 6.3
is shown in Figure 6.4.

In the official DUC evaluations, all 50 collections are “test data.” However, since
the DUC 2005 task is significantly different from previous DUC tasks, it is not a good
source of training data. Therefore, we report results based on 10-fold cross validation.
We train on 45 collections and test on the remaining 5. Rotating the test set gives us
system summaries on all 50 collections.2

Evaluation is a notoriously difficult problem for document summarization. The cur-
rent popular choice for metric is Rouge (Lin and Hovy, 2003), which (roughly speaking)

2Note that running the model in a cross validation setting is perhaps overly optimistic: the results
are not directly comparable against other DUC systems, since these did not have access to any of this
“training data.”
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Since the 1982 war over the Falkland Islands, relations between Argentina and Britain have

steadily improved. Full diplomatic relations resumed in 1990, and senior British and Argen-

tine officials have visited in London and Buenos Aires. In 1994, Prince Andrew made the

first royal visit to Argentina since the war’s end. British-Argentine economic relations have

slowly recovered. Argentina lifted financial and trade restrictions on British imports and has

encouraged British investment, including in its soon-to-be privatized nuclear industry. Rep-

resentatives from both countries have discussed the possibility of jointly developing offshore

gas and oil fields bordering the Falklands’ waters. Also, British and Argentine scientists have

begun joint research in fish conservation. Issues remain concerning military ties between the

two countries. Britain still has not lifted the arms embargo it imposed against Argentina

following the 1982 war, and refuses to do so. However, relations have progressed steadily to

the point where Britain and Argentina cooperated militarily during the 1991 Gulf War. Britain

and Argentina have seen rapid improvement in relations since President Carlos Menem took

office and adopted pro-western foreign policies. However, one issue continues to divide the

two. Argentina refuses to surrender sovereignty over the Falkland Islands, despite losing the

1982 war. Consequently, the Falklands’ fishing and oil resources continue to be a source of

friction. Although they made a one-year arrangement to share fish resources, Argentina is

tying any long-term agreement to British concessions to share oil development and lift the

arms embargo. Two things Britain is not prepared to do.

Figure 6.4: An example summary from the DUC 2005 summarization corpus.

computes n-gram overlap between a system summary and a set of human written sum-
maries. In various experiments, Rouge has been seen to correspond with human judgment
of summary quality. In the experiments described in this chapter, I use the “Rouge 2”
metric, which uses evenly weighted bigram scores. Formally, let H be the multiset of
bigrams in a hypothesis summary and let T be the multiset of bigrams in union of all
reference summaries. Then, Rouge 2 is computed as in Eq (6.1), where the sums are over
all possible word pairs and Hw,w′ (Tw,w′) is the number of times the bigram ww′ occurs
in the system hypothesis (reference summaries).

Rouge2(T, H) =

∑

(w,w′) max{Tw,w′ , Hw,w′}
∑

(w,w′) Tw,w′

(6.1)

The choice of which version of Rouge to use is relatively insubstantial: most Rouge
metrics would be equally easy to optimize. (In fact, the recent Basic Element-based
Rouge (Hovy et al., 2006) would be easier to optimize, due to its reliance on dependency
pairs rather than raw bigrams. Nevertheless, for simplicity, I work exclusively with Rouge
2 for the remainder of this chapter.)

6.4 Optimal Policy

Computing the optimal policy under the Rouge metric for the vine-growth model is
intractable. The intractability stems from the model constraint that a word can only be
added to a summary after its parent is added. I therefore use an approximately optimal
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policy. In order to approximate the cost of a given partial summary, I search for the best
possible policy. That is, if our goal is a 100 word summary and we have already created
a 50 word summary, then I execute search for the remaining 50 words that maximize the
Rouge score. In all experiments, I use a greedy beam search with a beam of 20. One
observes significantly diminishing returns for beams larger than 20.

6.5 Feature Functions

Features in the vine-growth model may consider any aspect of the currently generated
summary, and any part of the input document set. The features I employ for this problem
are as follows, letting w be the word under consideration and s being the sentence that
contains it:

• Word identity, stem and part of speech of w.

• Syntactic relation between w and its parent, or “ROOT”.

• The position of s.

• The length of s.

• Whether or not w is enclosed in quotes.

• The length of the document containing w.

• The number of pronouns in s; number in the subtree rooted at w.

• The number of attribution verbs (“say,” “state,” “observe,” etc.) in s; number in
the subtree rooted at w.

• Probability of w under a language model for the document containing w.

• Probability of w under a language model for the document collection.

• Probability of w under a language model for the query (derived using the BayeSum

technique).

• KL divergence between (a language model for) the sentence containing w and (a
language model for) the query (using BayeSum).

• KL divergence between the subtree rooted at w and the query (using BayeSum).

• Probability of w under a language model for the previously extracted summary.

• KL divergence between the subtree rooted at w and the previously extracted sum-
mary.

These are, with a few minor additions, the same features I used in previous work
(Daumé III and Marcu, 2005b).
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Argentina and Britain announced an agreement Thursday to restore full diplomatic ties ,

nearly eight years after they fought a 74 – day war over the Falkland islands , a sparsely

populated archipelago off Argentina ’s coast in the South Atlantic Ocean . Britain is to

invite Argentina ’s economy and foreign ministers to London this year in official visit to

Britain by Argentine ministers since the Falklands war in 1982 . Argentina announced that

it has decided to lift financial and trade restrictions on imports from Britain that were

imposed during the 1982 Falkland islands War . Hurd to visit Argentina . British boost for

Argentina .

Figure 6.5: Example 100-word output from the BayeSum system after rule-based sen-
tence compression and post-processing.

Argentina and Britain announced an agreement to restore diplomatic ties , eight years after

they fought a 74 – day war over the Falkland islands . Argentina gets out the red carpet

for the UK ’s Duke of York , the first official visitor since the end. Douglas Hurd will meet

President Menem in Argentina . Britain is to invite Argentina ’s ministers to London this

year in the first official visit to Britain since the Falklands war in 1982 . Argentina announced

that it has decided to lift financial and trade restrictions on imports from Britain that were

imposed during the War .

Figure 6.6: Example 100-word output from the Searn-based Vine Growth model after
post-processing.

6.6 Experimental Results

Experimental results are shown in Table 6.1. I report Rouge scores for summaries of
length 100 and length 250. I compare the following systems. First, an oracle system that
performs the summarization task with knowledge of the true output. The oracle systems
create summaries so as to maximize the Rouge score. I present results for an oracle
sentence extraction system (Extr) and an oracle vine-growth system (Vine). Second,
I present the results of the Searn-based systems, again for both sentence extraction
(Extr) and vine-growth (Vine). Both of these are trained with respect to the oracle
system. (Note that it is impossible to compare against competing structured prediction
techniques. This summarization problem, even in its simplified form, is far too complex
to be amenable to other methods.)

For comparison, I next present results from the BayeSum system (Daumé III and
Marcu, 2005b; Daumé III and Marcu, 2006), which achieved the highest score according
to human evaluations of responsiveness in DUC 05 and which scored third according to
the Rouge 2 metric among roughly 30 systems. This system, as submitted to DUC 05,
was trained on DUC 2003 data; the results for this configuration are shown in the “D03”
column. For the sake of fair comparison, I also present the results of this system, trained in
the same cross-validation approach as the Searn-based systems (column “D05”). Finally,
I present the results for the baseline system and for the best DUC 2005 system (according
to the Rouge 2 metric).

As we can see from Table 6.1 at the 100 word level, sentence extraction is a nearly
solved problem for this domain and this evaluation metric. That is, the oracle sentence
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ORACLE SEARN BAYESUM
Vine Extr Vine Extr D05 D03 Baseline Best D05

100 W 0.0729 0.0362 0.0415 0.0345 0.0340 0.0316 0.0181 -
250 W 0.1351 0.0809 0.0824 0.0767 0.0762 0.0698 0.0403 0.0725

Table 6.1: Summarization results; values shown are Rouge 2 scores (higher is better).

extraction system yields a Rouge score of 0.0362, compared to the score achieved by the
Searn system of 0.0345. This difference is on the border of statistical significance at the
95% level.

The next noticeable item in the results is that, although the Searn-based extraction
system comes quite close to the theoretical optimal, the oracle results for the vine-growth
method are significantly higher. At 100 words, the best vine-growth system can achieve
a two-fold improvement in score over the best sentence extraction system. The difference
at 250 words is slightly less pronounced (1.6-fold) but still large.

The next thing to notice is that, under Searn, the summaries produced by the vine-
growth technique are uniformally better than those produced by raw extraction. This
difference is more pronounced at the 100 word level (1.2 times better) than at the 250
word level (1.07 times better), though both are statistically significant. This conforms
with the prior expectation that simple sentence extraction is “okay” for long summaries,
but is less appropriate for very short summaries.

The last aspect of the results to notice is how the Searn-based models compare to
the best DUC 2005 system, which achieved a Rouge score of 0.0725. The Searn-base
systems uniformly dominate this result (0.824 for vine-growth and 0.0767 for extraction),
but this comparison is not fair due to the training data. We can approximate the expected
improvement for having the new training data by comparing the BayeSum system when
trained on the DUC 2005 and DUC 2003 data: the improvement is 0.0064 absolute. When
this result is added to the best DUC 2005 system, its score rises to 0.0789, which is better
than the Searn-based extraction system but not as good as the vine-growth system. It
should be noted that the best DUC 2005 system was a purely extractive system (Ye et
al., 2005).

6.7 Error Analysis

6.8 Discussion and Conclusions

This chapter presents an approach to the summarization problem based on the vine-
growth model. Under this model, a summary is created on a word-by-word basis by
“growing” subtrees that have previously been added. This methodology leads to a com-
pact search space and maintains some grammaticality in the outputs. The trade-off is
that there is no closed form solution for the standard Rouge metrics under this model.
To remedy this, I apply the search-based optimal policy approximation described in Sec-
tion 3.6.2. This leads to an efficient and easy-to-implement solution. In experimental
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results, the vine-growth technique outperforms raw sentence extraction approaches, in-
cluding the winner of the DUC 2005 competition.

One attractive quality of the vine-growth method is that it is easy to imagine how to
generalize it to an abstractive summarization system, but including actions that corre-
spond to “replace word X with word Y ” or “replace this phrase” or “rotate this subtree.”
The advantage to building an abstractive system in this manner—by building up upon
the vine-growth method—is that one does not necessarily need to incur a performance
hit by moving to an abstract, as might be expected if one were to build an abstractive
system from scratch.
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Chapter 7

Conclusions and Future Directions

In this thesis, I have:

• Presented an algorithm, Searn, for solving complex structured prediction problems
with minimal assumptions on the structure of the output and loss function.

• Compared the performance of Searn against standard structured prediction al-
gorithms on standard sequence labeling tasks, showing that it is competitive with
existing techniques.

• Developed a large number of useful features for the entity detection and tracking
task, and demonstrated that Searn is able to solve this problem with high perfor-
mance and small computational overhead, even with new features that break model
tractability.

• Described a novel approach to summarization—the vine-growth method—and ap-
plied Searn to the underlying learning problem, yielding state-of-the-art perfor-
mance on standardized summarization data sets.

The applications described have shown that Searn is, indeed, a general framework for
a large variety of structured prediction problems. Moreover, as it is simple to implement,
I have high hopes that researchers both inside and outside of NLP will find it useful
for solving even more problems. I have shown that Searn obeys a desirable theoretical
property: given a good classification algorithm, one is guaranteed a good structured
prediction algorithm. Importantly, this result is independent of the size of the search
space or the tractability of the search method. To my knowledge, it is also the first
theoretical result that shows that local learning—when done properly—can lead to good
global performance.

Despite these successes, there are many structured prediction problems that are cur-
rently outside the umbrella covered by Searn. In the next two sections, I describe two
areas—weak-feedback models and hidden variable models—for which Searn requires
some extensions to be applicable. I further present preliminary results that suggest that
it is possible to apply Searn in both of these settings.
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7.1 Weak Feedback Models

Weak feedback is a relatively unconventional machine learning setting. The situation that
weak feedback learning attempts to model is the following. Suppose you work for an online
store. For each product listed on your web site, you would like to have an automatically
generated product summary. You are able to spend some fixed amount of money paying
humans to write example summaries off which you will train a summarization system,
like that described in Chapter 6. Now you deploy this summarization system on your
web site. Some users have the option of reporting whether they found the summary
useful or not. Or perhaps they rank the summary on a scale from 1 to 5. Or they are
presented with two summaries and may select which is better (or “neither”). In all three
user situations, you would like to be able to use the feedback received to improve the
summarization system. This is the weak feedback setting: your system receives a loss,
but one that is only a very weak approximation to the true loss.

7.1.1 Comparison Oracle Model

In this section, I consider a simplified model for weak feedback based on an pairwise
oracle setting. The model is as in structured prediction: we have a fixed by unknown
distribution D over pairs (x, y) ∈ X × Y, where Y is structured, and a loss function
l : X ×Y ×Y → R

+. Additionally, we have a comparison oracle, o : X ×Y ×Y → [−1, 1].
The intuition is that o(x, y, y′) returns a negative value if y is better than y′, a positive
value if y is worse and 0 if the two are indistinguishable.

In order to proceed, one must make an assumption about the relationship between o
and l. I make the most basic assumption possible. Let yt be the true output for x; then
I assume that Eq (7.1) holds, which clearly satisfies the intuition.

o(x, y, y′) =
1

Zx

[

`(x, yt, y)− `(x, yt, y′)
]

(7.1)

Zx = max
y,y′

∣

∣`(x, yt, y)− `(x, yt, y′)
∣

∣

The oracle assumption made in Eq (7.1) is of course overly strong. Ideally, one would
prefer a model that can accommodate a noisy oracle, or one that can abstain, but for
simplicity I consider only this basic setting. This cleanly separates two components of the
weak feedback setting: the first component is the fact that one only has implicit access
to the loss function (which I retain), while the second is the fact that the oracle is not
exactly the same as the loss function (this component I ignore).

7.1.2 Algorithm

Under the comparison oracle model, I assume that we have a small labeled structured
prediction data set D = 〈xn, yn〉1:N and a large unlabeled data set DU = 〈xm〉1:M together
with an oracle function o for the unlabeled data.

Näıvely, one could solve this problem by transforming DU into a labeled data set by
searching, for each xm ∈ DU , for the y ∈ Y with minimal loss (by searching over all
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pairs and applying the oracle). Unfortunately, without unrealistic assumptions on the
loss function, this would require a search over an exponential number of possible output
pairs (think about learning in the context of the classic board game Mastermind, which
is NP-complete even to play (Stuckman and Zhang, 2005)). Moreover, in any generalized
setting with an imperfect or noisy oracle, such a solution would not be robust.

The solution I propose here (though it is by no means the best possible solution) is
to use the labeled data set D to learn a policy π by applying Searn. One may then
run a variant of Searn over the unlabeled data, treating the learned π (which does
not contain the optimal policy) in the role of the current policy. As in Searn, for any
step in the search process, this will lead to |A|-many actions. The remaining question
is how to compute the corresponding losses, `π

a from Eq (3.2). Computing the losses
can be done by using the oracle to find the action that leads to the smallest loss using
|A| − 1 comparisons. Once the best action at is found, the loss `π

a for any action a can
be computed using o(x, at, a). Again, this takes at most |A| − 1 comparisons.

The full algorithm proceeds as follows:

1. Learn a policy π = Searn(D, π∗, Learn) for a given π∗ on the labeled data and
some classifier Learn.

2. Learn a new policy π′ on the union of the standard data set D (using π∗ as the
optimal policy) and the unlabeled data set DU (using π as the optimal policy and
computing losses as described above).

3. Set π = π′ and go to (2) until performance drops on development data.

7.1.3 Analysis

The algorithm described for learning in the comparison oracle model works intuitively
precisely because Searn works. The only potential concern is that on the unlabeled data,
the policy used as “optimal” is not, in fact, optimal. However, since the algorithm still
uses the optimal losses, this does not appear to present a problem. Nevertheless, I do not
currently have a theoretical analysis of this algorithm akin to Theorem 3.6.

An important question is: how many times will the oracle be called? Since the model
is of a situation where a human is asked for opinions on outputs, one does not wish
the number of queries to be too large (otherwise it might be less expensive to simply
have the humans directly annotate the data). Suppose there are N unlabeled examples,
each of length T and there are |A| actions at each time step. Then, in the worst case,
2N |A| (T − 1) queries will be asked for each iteration of the algorithm.

While the number of questions is linear in all important variables, it may still be
too large in practice. In this case, one could directly apply research in active learning;
see (Cohn, Ghahramani, and Jordan, 1996; Greiner, Grove, and Roth, 1996; Roy and
McCallum, 2001) for representative work. This would also fit nicely in extending these
results to a noisy setting. The most similar active learning results is incomplete boundary
query (IBQ) model of Blum et al. (1998) (also, see the intermediate concepts model
of Kwek (2001)). The IBQ model is an active learning PAC-style learning framework
(Valiant, 1994; Angluin et al., 1997) in which the “labeler” can abstain. In particular, in
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Figure 7.1: Learning curves for weak-feedback experiments on syntactic chunking; y-axes
are 1 − F . (Left) X-axis is amount of supervised data available. The higher (circled
blue) curve is the purely supervised setting; the lower (crossed black) curve is when the
remaining data is used as a weak-feedback oracle. (Right) The higher (red diamond)
curve is keeping the amount of supervised data constant (200 words) and varying the
amount of oracle data; the lower (crossed black) curve is replicated from left.

the binary classification setting, one defines a radius of uncertainty r around a boundary
function. Whenever an input x is within a distance of r to the boundary, the labeler
can abstain. However, to obtain positive results, (Blum et al., 1998) assume that the
boundary region has zero measure under the data generating distribution. Evaluating
the implications of these assumptions in the weak feedback model is left to future work.

7.1.4 Experimental Results

I have performed two experiments, both based on the syntactic chunking task described
in Section 4.1.3. The results of the experiments are shown in Figure 7.1.

The first experiment aims to determine how much the performance of a system is
adversely affected by using weak feedback rather than true labeled examples. The exper-
iment as as follows. We vary the amount of supervised data available (from 100 words to
200, 000 words) and train a Searn-based model on this data. This gives an upper bound
on the error we can expect with a weak feedback model. Next, we vary the amount of
supervised data and use the remaining data as unlabeled data for which a weak feedback
oracle is available.

The results are shown in the Left of Figure 7.1. On the very left of this figure, we
see that the purely supervised model (upper, circled blue curve) achieves an error rate of
roughly 28. When we throw in 200, 000−100 words of weak feedback data (lower, crossed
black curve), this drops substantially to roughly 13. On the far right of the figure, the
two curves converge at an error rate of roughly 6 (in this case, no weak feedback data
is used). As we can see, the weak feedback curve drops very quickly (after roughly 1000
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words of standard labeled data) to an error rate very near that of optimal. This suggests
that, at least under the idealized model, this is a viable approach.

The second experiment aims to understand how much oracle data is needed to achieve
good performance. In this experiment, we hold the amount of standard labeled data
constant at 200 words. Then, we vary the amount of weak feedback data available (again,
from 100 words to 200, 000 words).

The results are shown in the Right of Figure 7.1. The upper horizontal line is the
performance of a system trained only on the 200 words of supervised data. The lower
horizontal line is the performance of a system trained on 200 words of supervised data
and 200, 000 words of weak feedback data. The lower (crossed black) curve is replicated
from the Left of the figure. The upper (diamond red) curve is the results of varying the
amount of weak feedback data. As we can see, comparing the upper and lower curves,
there is a significantly greater bang-for-the-buck of adding supervised data rather than
weak feedback data (the error rate of the lower curve drops more sharply).

7.1.5 Discussion

In this section, I described a simple model for a weak feedback setting in which an oracle
provides comparisons between proposed outputs. I presented an algorithm based on
Searn for learning in this setting and provided preliminary experimental results that
suggest this is a viable approach.

The experimental results support two conclusions. First, given access to a large
amount of weak feedback data, one need significantly less standard supervised data to
learn well. In fact, one can obtain comparable results to having 100k labeled words with
only 1000 labeled words and a large amount of oracle data. Second, one can achieve the
same performance level of 500 words of labeled data with only 200 words of labeled data
and 500 words of weak feedback data. These results suggest that this is a promising
direction for further investigation, both at a theoretical and practical level.

7.2 Hidden Variable Models

Hidden variable models are extremely popular in natural language processing, perhaps
first popularized by Brown et al. (1993). The hidden variable framework allows for
the construction of models with apparently complex interdependencies between variables
that can be modeled in a straightforward manner. While most hidden variable models
are formulated in a generative fashion, recent work has shown that conditional random
fields are also amenable to such settings (McCallum, Bellare, and Pereira, 2005).

The setting I am interested in is supervised learning with hidden variables, rather than
the more common setting of unsupervised learning with hidden variables. In particular,
the setting I am concerned with is the case where the problem to be solved is a standard
supervised learning problem, but there are underlying hidden variables that will be useful
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Figure 7.2: Two example alignments used in the translation classification task. The left
alignment is for a positive example; the right alignment is for a negative example.

to solving it.1 While direct applications of hidden variable models to supervised natural
language processing problems are rare (though see Matsuzaki, Miyao, and Tsujii (2005)
and Koo and Collins (2005) for two related exceptions in the realm of parsing), there
seems to be a significant amount of potential in the framework.

7.2.1 Translation Classification

As a running example task, I will use the translation classification problem. This prob-
lem arises when one wishes to use comparable corpora (instead of the standard parallel
corpora) for learning models for machine translation. In this setting, one extracts a large
set of English sentences and a large set of (say) Arabic sentences from two corpora on
roughly the same topic. One then wishes to identify which English/Arabic sentence pairs
are mutual translations. This is a pure binary classification task: given an input (En-
glish/Arabic sentence pair), determine whether or not the two are mutual translations.
If done well with sufficient data, this approach can lead to improved machine translation
performance (Munteanu and Marcu, 2005). Although this discussion will focus on the
translation classification problem, it is strongly related to several other tasks. In para-
phrase identification, one attempts to solve virtually the same problem, but with both
sentences in the same language (Barzilay and McKeown, 2001; Dolan, Quirk, and Brock-
ett, 2004). Similarly, in textual entailment, one attempts to build a classifier to detect
if one of two sentences logically follows from the other (Raina, Ng, and Manning, 2005;
Oren Glickman, 2005). Related approaches are used for all three of these problems.

Munteanu and Marcu (2005) solve the translation classification problem by learning
a standard binary classifier (in practice, they use a maximum entropy model). The

1This contrasts with the less supervised setting where one only has partial annotations and treats the
true output as a hidden variable problem; as done by, for example, Riezler et al. (2002) and Clark and
Curran (2004). These tasks fit more closely to the weak feedback setting discussed in Section 7.1.
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interesting aspect of their approach is the feature set. First, they compute word-to-
word and phrase-to-phrase alignments between the English sentence and its hypothesized
Arabic translation. Example alignments are shown in Figure 7.2. Features are then
defined over the alignments, rather than over the sentence pairs. The key intuition is that
the alignment for the positive example is significantly more “natural” that the one for
the negative example (more words aligned, closer to a monotone order, smaller fertilities,
etc.). The features are designed to reflect these factors.

The key question I am interested in is: how does one derive these alignments. In their
original work, Munteanu and Marcu use a small parallel corpus to build an unsupervised
alignment model using standard techniques (Brown et al., 1993) and the GIZA++ im-
plementation (Och and Ney, 2003). The alignment model and its implementation have
been heavily tuned to produce alignments that are good for the purpose of translation.
It is a priori unclear that such alignments are also good for the purpose of distinguishing
parallel and non-parallel sentence pairs. What we seek is a method to learn how to per-
form alignments that are optimal from the perspective of the end task we wish to solve.
In this case, that task is translation classification.

7.2.2 Search-based Hidden Variable Models

In the majority of the applications of hidden variable models in the natural language pro-
cessing community, the desired hidden variables are structured, much like the alignments
in the translation classification task. Given that the hidden variables are structured, it
appears natural to attempt to apply Searn to such problems. The difficult that arises
is in defining a loss function. This difficulty exists because we do not actually have an-
notated data for these hidden variables. Moreover, we do not necessarily have access to
a loss function for them.

Abstracting from a particular application, consider the following general settings. We
have three spaces: an input space X , an output space Y (which may or may not be
structured) and a hidden variable space Z. We also have a loss function ` over the true
output space, but no such function over the hidden variable space. Our training data is a
set of examples drawn from a distribution over X ×Y. Our goal is a function h : X → Y
with low expected loss over examples drawn from the source distribution (see Section 2.1).

However, in the hidden variable model case, we believe that it is easier to solve this
task in two steps. First, we use the input x ∈ X to find a value for the hidden variables
z ∈ Z. Then, we use the input x and the hidden variable z to produce a classification.
This breakdown is shown in Eq (7.2).

f : X → Z , g : X × Z → Y , h(x) = g(x, f(x)) (7.2)

Those familiar with the expectation maximization family of algorithms (Dempster,
Laird, and Rubin, 1977) might be put off by the fact that f “selects” a single hidden
variable z ∈ Z rather than a distribution over hidden variables. It is straightforward
to generalize this set up to the case where f produces more than a single output, as in
Eq (7.3).
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f : X → Υ(Z) , g : X ×Υ(Z)→ Y , h(x) = g(x, f(x)) (7.3)

In Eq (7.3), Υ(Z) ⊆ { p : Z → R } for some set R. That is, Υ(Z) can be thought of as
selecting a weighted subset of Z. An element of Υ(Z) is a function that maps an element
of Z to a “score” in the set R. When Υ(Z) contains only a single element, Eq (7.3)
reduces to Eq (7.2). On the other hand, when R is the tropical semi-ring and p ∈ Υ(Z)
satisfies p(z) ≥ 0R and

∑R
z∈Z p(z) = 1R, then this can be interpreted as a probability

distribution over hidden variables. In intermediate settings, Υ(Z) can be thought of as a
weighted beam (priority queue) over the “best” outputs.

For simplicity, I will focus on the single-output case (Eq (7.2)) for the remainder of
this section. However, the extension to the full expectation case and to the beam case is
straightforward. See Section 7.2.5 for a comparison to the EM approach. Note that, by
assumption on Z, learning f (from Eq (7.2)) is a structured prediction problem.

7.2.2.1 Iterative Algorithm

It turns out that this formulation introduces another chicken and egg problem. That is,
we seek a pair of functions (f, g) so that f produces hidden variables that are optimal
for g, and g produces classifications based on features that depend on the output of
f . As before, we tackle the chicken and egg problem via iteration. The algorithm is
straightforward. It begins by initializing either f or g according to prior knowledge.
Suppose f is initialized by prior knowledge. Then, g is optimized on the basis of the
output of f , holding f fixed. Once g has been optimized, f is re-learned on the basis of
the new g. This process of alternating learning ends when the performance of f ceases
to increase.

There are two important aspects of this algorithm: first, unlike Searn, there is no
interpolation; second, the success hinges on the initialization.

Interpolation is unnecessary in the hidden variable case because we will use an optimal
policy for learning f that is sufficient to guarantee convergence. This choice is described
in Section 7.2.2.2, but, briefly, the optimal policy is chosen so that successfully learning
the hidden variable model will immediately imply that the classifier g can do no worse.

It is somewhat undesirable that the algorithm should be sensitive to initialization.
Ideally, one would like an algorithm that can initialize itself, or one whose performance
guarantees do not depend on the quality of the initialization. Unfortunately, this is
currently not possible with the approach described in this chapter. It is some conciliation
that this sensitivity to initialization is not limited to this Searn-based approach. The
hidden variable CRF models (McCallum, Bellare, and Pereira, 2005) are highly sensitive
to initialization; in the work on learning string-edit distances, the authors had to initialize
the models by hand-setting some feature weights (Bellare, 2005). Even unsupervised
models trained with EM are highly sensitive to initialization; in applying the IBM machine
translation models, one must follow a strict sequence of initialization steps in order to
obtain competitive results (Och and Ney, 2003).

One advantage to the approach described in this section is that one can initialize either
the hidden variable model f or the classifier g. In some cases—such as the translation
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classification problem—it may be easier to initialize the hidden variable model f by
beginning with a given unsupervised model, such as that given by GIZA++. In other
cases, it may be easier to initialize the final classifier g by hand-setting some weights
according to prior information. Note that an obvious idea—initializing g by training a
model that ignore the hidden variables—will not be possible in our setting. This is because
the definition of the optimal policy for learning f will assume that g is not invariant to
the values of the hidden variables.

7.2.2.2 Optimal Policy

In order to apply Searn to the hidden variable framework, we need only define the
optimal policy. The key to the definition is the notion that a good value for the hidden
variable is one that makes the classification problem easier. The optimal policy will be
defined to be the policy that allows the fixed classification function g to do best with
respect to its loss function (note that the loss function optimized for g may not be the
same as the overall loss function ` defined for the problem—more on this later).

Formally, let the classifier g be fixed and let lg be the loss function optimized for g.
For all classification pairs (x, y) ∈ X × Y, define the cost of a hidden variable z ∈ Z
(denoted cx,y(z)) to be lg(y, g(x, f(x))). That is, the cost of the hidden variable is the
loss associated with the classification made when z is assumed to be correct. Intuitively,
a low cost means that the classification is easy.

This definition of cost enables us to formally construct a distribution over structured
prediction problems as defined in Def 3.1. This distribution, DSP, is over the input space
X and has cost vectors indexed by elements of Z. Given a distribution D over X × Y,
a classifier g and a loss function lg, we simulate a structured prediction distribution DSP

by first drawing a pair (x, y) ∼ D, then producing a structured prediction example whose
input is x and whose cost vector c is given by cx,y(·). That is, the cost of a structure z
is simply the cost of the final classification algorithm.

In most cases, an analytic solution to the optimal policy for a cost vector constructed
thusly is impossible. We must therefore result to a search-based optimal policy (see
Section 3.6.2). That is, we execute a standard search algorithm (say, beam search) over
the cost vectors c to find an approximately optimal step. One aspect of this search, as
opposed to the classical search described in Section 3.6.2 is that the argument that search
will always succeed does not hold. Moreover, one cannot easily ascertain whether search
errors are being made. One must therefore be more judicious in constructing the search
space and actions for hidden variable problems than perhaps for standard structured
prediction problems.

7.2.3 Features and Data

The experimental results I present in this section are intended only as a proof of concept.
The task is the translation classification problem (see Section 7.2.1). For simplicity, I
use a parallel corpus (English/Spanish) that was hand crafted by Kevin Knight as a
educational tool to explain alignment models. The full corpus of twelve parallel sentences
is shown in Figure 7.3.
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Garcia and associates . the clients and the associates are enemies .
Garcia y asociados . los clientes y los asociados son enemigos .
Carlos Garcia has three associates . the company has three groups .
Carlos Garcia tiene tres asociados . la empresa tiene tres grupos .
his associates are not strong . its groups are in Europe .
sus asociados no son fuertes . sus grupos estan en Europa .
Garcia has a company also . the modern groups sell strong pharmaceuticals .
Garcia tambien tiene una empresa . los grupos modernos venden medicinas fuertes .
its clients are angry . the groups do not sell zenzanine .
sus clientes estan enfadados . los grupos no venden zanzanina .
the associates are also angry . the small groups are not modern .
los asociados tambien estan enfadados . los grupos pequenos no son modernos .

Figure 7.3: Custom corpus used for proof of concept experiments for hidden variable
alignments model.

In order to turn this corpus into a translation classification corpus, I use the twelve
displayed sentence pairs as positive examples. To create the negative examples, I took
each English sentence and paired it with a random incorrect Spanish sentence. I perform
leave-two-out cross validation (always one correct and one incorrect sentence left out)
where the incorrect sentence pairs are chosen exclusively from the training data.

When applying hidden-variable Searn, one needs to specify two sets of features:
the structured prediction features for learning the hidden variables and the classification
features for the final classifier. For this task, I use an identical feature set for both:

• Number of unaligned words (and fraction of total words)

• Distortion distance

• Aligned word pairs

• Null-aligned words

• Number of crossing alignments

• Maximum fertility

• Difference in sentence lengths

To draw a comparison, I also train a raw binary classifier. This classifier uses the
following features:

• Difference in sentence lengths

• Pairs of all words
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the company has three groups

la tieneempresa tres grupos

the small groups are not modern

los grupos pequenos no son modernos

garcia and associates

los clientes y los asociados son enemigos

Figure 7.4: Three alignments found during the Searn-based hidden variable training;
the left two are positive examples, the right-most example is negative.

7.2.4 Experimental Results

As a baseline, I use a binary classifier using similar features to those described in the
previous section. However, lacking alignments, I use all pairs of words as features, and
do not use any of the distortion/fertility/crossing features. I use a vanilla maximum
entropy classifier and tune the prior to achieve good results on development data. The
results of this baseline system under the cross-validation experimental setting described
above is an error rate of 40.67%, which is rather close to the worst possible performance
of 50%. (If, instead, the prior parameter is chosen to achieve the best possible test set
performance—i.e., if we cheat—the error rate drops to 38.33%.) When the Searn-based
model is trained with alignments enabled (still using maximum entropy classifiers), the
error rate under the same cross-validation setting drops to 32.33% (and down to 30%
under the cheating setting). A 30% error rate is still quite bad, but the addition of the
hidden variable does enable a significant increase in performance.

For an intuitive analysis of what the model is doing, I have shown the hypothesized
alignment for three sentences (all test data) created by Searn in Figure 7.4. The first two
examples are positive; the third is negative. Both positive examples are reasonable. In
the left-most sentence pair, the model missed the alignment of “three” to “tres” precisely
because this word pair did not appear in any of the training examples. In the middle
sentence pair, the model misaligns “are” to “pequenos.” This misalignment is likely
due to learned distortion features, rather than word features, since “pequenos” does not
appear in any of the training sentences. In the final, negative example, the model aligns
“and” and “y” and “associates” to “asociados”, which are both reasonable alignments.
The rest of the words are left unaligned, which is appropriate for this example.

7.2.5 Comparison to Expectation Maximization

Expectation maximization (Dempster, Laird, and Rubin, 1977) is a family of algo-
rithms for performing maximum likelihood estimation in probabilistic models with hid-
den variables. That is, we have a density p(x | θ) that we wish to maximize with re-
spect to θ. We do so by introducing a hidden variable and instead seek to maximize
sumzp(z | θ)p(x | z, θ). The introduction of the sum over hidden variables is necessary
according to the probability calculus (Cox, 2001), but makes standard maximum like-
lihood estimation difficult. This difficulty stems from the fact that to perform MLE,
one typically takes the log of the probability distribution. This, whenever p belongs to
the exponential family, allows straightforward computation of the gradient of log p with
respect to θ in a closed form.

Unfortunately, in the hidden variable model, one cannot move logs inside sums, mak-
ing the straightforward approach difficult. However, one can instead optimize a tight
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lower bound on the joint probability by applying Jensen’s inequality (Jensen, 1906) to
the log

∑

z yielding a resulting distribution of the form Ez∼p(· | x,θ)[log p(x | z, θ)], which
can be optimized the the standard form. This procedure involves two steps: computing
the expectations of the hidden variables (the “E” step) and maximizing the log proba-
bility with respect to these expectations (the “M” step). By iterating these steps, one
will converge to a local maximum in the incomplete log likelihood space obtained by
marginalizing over the hidden variables: p(x | θ). Bilmes (1997) and Knight (1999) pro-
vide excellent introductions to EM from an NLP perspective.

Before drawing parallels to EM, it is worth noting that the algorithm described above
for applying Searn to hidden variable problems is quite different from the probabilistic
approach. Foremost, Searn does not produce probabilistic models. It seems to minimize
an empirical loss. Moreover, Searn is discriminative rather than generative. That is,
the probabilistic approach models a density p(x), and does not explicitly seek to be able
to predict. Even if Searn were retrofitted to function in a probabilistic setting, vanilla
EM would be inappropriate (though one could attempt to apply conditional EM (Jebara
and Pentland, 1998)).

The key similarity between EM and hidden-variable Searn is in the iterative approach
to both algorithms. The necessity of iteration is not surprising: the problem being solved
is similar in both cases. The problem is a chicken-and-egg problem, which leads naturally
to an iterative approach. Both algorithms solve this chicken and egg problem by first
guessing at the hidden structure, then learning a new model (a new density for EM or
a new predictor for Searn) on the basis of this guessed hidden structure. The primary
difference between the two is that in the “guessing” step, EM guesses an entire distribution
over hidden variables, while Searn guesses a single hidden variable.

The reason why the Searn-based approach does not require a full expectation is
that training against an optimal policy is a stronger requirement than maximizing a
density p(z). In particular, the optimal policy is carefully constructed so that a successful
application of Searn will yield convergence guarantees for the hidden variable algorithm.
The simple computation of expectations in EM is a weaker requirement and thus leads
to weaker theoretical results.

A stronger connection to EM can be seen when Searn is run in exact-search mode,
rather than single-best mode. In this case, it can be made to produce every value for z,
each with a different score (or at the very least in a ranked order). These scores can be
fed through a soft-max function to produce “probabilities.” This induces a distribution
over the hidden variables, much akin to the EM case. If we then structure the g function
from Eq (7.3) as shown in Eq (7.4), we obtain a maximization step that parallels that of
EM (for the pure classification setting).

g : X ×Υ(Z)→ Y (7.4)

g(x, p) = sgn





∑

z∈dom(p)

g′(x, z) exp p(z)





g′(x, z) = any binary classifier
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Under this definition of g, we use the soft-max probabilities (i.e., exp p(z)) given by
the scoring function to induce a distribution over which our classifier votes. The binary
classifier g′ is trained as in any standard classification algorithm. In this case, however,
f and g are structured so that the algorithm more closely resembles EM, though this is
of course not necessary. The g function could directly use the beam output by f , rather
than simply voting over it.

7.3 Other Applications for Searn

In this thesis, I have presented strong empirical results demonstrating the efficacy of
Searn on three types of problems: sequence labeling problems, the entity detection and
tracking problem, and an automatic document summarization problem. In this chapter,
I have presented preliminary evidence that Searn can also be effectively applied for a
supervised word alignment task with hidden variables. In this section, I briefly discuss
the possibilities of applying Searn to two other well-known problems in natural language
processing: parsing and machine translation.

7.3.1 Parsing

In this section, I consider the problem of dependency parsing in a bottom-up, left-to-right
framework (Nivre, 2003; Sagae and Lavie, 2005; Turian and Melamed, 2006). The choice
of a dependency model is primarily for convenience. The extension to the constituency
case is a bit more involved, but still possible. The extension to a non-left-to-right frame-
work (i.e., to CKY parsing (Kasami, 1965; Younger, 1967)) is somewhat less obvious.
The primary difficulty in the CKY model is that the search algorithm and the dynamic
programming table (the chart) are intrinsically tied. Perhaps the easiest method for think-
ing about applying Searn in a standard constituency-based parsing framework is in the
hyper-graph formalism (Klein and Manning, 2003a), where a Searn-action corresponds
to traversing a hyper-edge in the chart.

As a running example, consider the sentence “the man ate a bit sandwich .” The
correct (unlabeled) dependency parse for this sentence is shown in Figure 7.5. The stan-
dard assumption for dependency parsing is that of projectivity: essentially, none of the
arcs cross. This assumption is true in most languages, but untrue, for instance, in Czech
(McDonald, Lerman, and Pereira, 2006). In the shift-reduce framework, a dependency
tree is built through a sequence of steps. The parser maintains an active stack onto which
words are pushed using the shift action. The top two elements on the stack (the most
recent two) can be combined using a reduce action. There are two reduce actions: one
for each possible direction the arrow could point. The complete derivation of the tree is
shown in the right of Figure 7.5.

It is clear from this analysis that the decision of shift/reduce-left/reduce-right could be
accomplished using Searn. The standard loss function for this problem is Hamming loss
over dependencies (sometimes directed, sometimes undirected). I consider the undirected
case for simplicity. Again, the key questions are defining the optimal policy and (perhaps)
the optimal approximation loss. It is surprisingly easy to define the optimal policy for
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the man ate a sandwich .big

shift(the)
shift(man)
reduce(the ← man)
shift(ate)
reduce([the man] ← ate)
shift(a)
shift(big)
shift(sandwich)
reduce(big ← sandwich)
reduce(a ← [big sandwich])
reduce([. . . ate] → [a. . . ])
shift(.)
reduce([the. . . sandwich] → .)

Figure 7.5: (Left) The dependency tree for the sentence “the man ate a big sandwich .”
(Right) The sequence of shift-reduce steps that leads to this parse structure.

this problem. Note that a partial hypothesis (state in the search space) for this problem
is represented by the stack, which I denote s1, . . . , sI .

π∗(x, y, s1:i−1) =















shift i ≤ 2
reduce there are no words left to shift
reduce there is an arc between si−2 and si−1

shift otherwise

(7.5)

The reason this is optimal is as follows. If there should be a reduction between the
two most recent words, we have to create it now because we will never have a chance
again. Otherwise, any mistakes we have made so far are hopeless: we cannot recover.
We might as well shift until we have nothing left to shift and then start reducing. There
are a few degrees of freedom: we should alternatively reduce until we cannot reduce any
more and then start shifting. In practice, one might want to randomize these choices.

The computation of the optimal approximation loss is even easier. Any incorrectly
specified arcs encountered thus far cannot be fixed, so one must accumulate error for them.
Any arcs not encountered thus far can always be satisfied. So the optimal approximation
Hamming loss is simply the Hamming loss up until the current step.

The application of Searn to a left-to-right dependency parsing model appears to be a
promising application. In fact, in a quantitative comparison between a greedy left-to-right
dependency parsing algorithm (Nivre, 2003) and a parser based on exact inference (Mc-
Donald, Lerman, and Pereira, 2006), the left-to-right algorithm achieves nearly the same
performance as the exact model. Qualitatively, the left-to-right system tends to make
better parsing decisions early, but suffers from error propagation (McDonald, 2006b).
The Searn algorithm is designed explicitly to cope with such problems, which implies
that a direct application to Searn to the greedy parser might close the gap in accuracy
with little loss in efficiency.
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7.4 Machine Translation

Machine translation is, to many people, the Holy Grail of NLP. In this section, I discuss an
incredibly simple model for MT, but the extension to more complex models is relatively
straightforward. Specifically, I only consider left-to-right translation. This framework
covers most models of word-based (Germann et al., 2003) and phrase-based translation
(Och, 1999; Koehn, Och, and Marcu, 2003), though not necessarily all recent models of
syntactic translation (Melamed, 2004; Chiang, 2005; Quirk, Menezes, and Cherry, 2005;
Galley et al., 2006).

There are at least two ways to think about applying Searn in the machine translation
setting. The first is to use Searn to play the same role that min-Bleu training (Och,
2003) and to hold the various translation features fixed (typically there are roughly twelve,
including translation probabilities, language model probabilities, length penalties, etc.).
It seems likely that, used in this setting, Searn should perform roughly comparably to
the standard parameter tweaking methods based on Powell’s method or grid search.

The second approach to applying Searn in a translation setting is in an end-to-
end manner. In this setting, one would forgo the offline construction of the various
probabilistic table (eg., the translation table) and directly optimize a Searn model.
This approach is the one described below. The advantage to applying Searn in this
setting is that one can easily optimize over hundreds of thousands of parameters, rather
than being limited to tens of features, as required by Powell’s method and grid search.
However, as in the hidden variable setting, it is likely that one would need to initialize
Searn appropriately, since the MT problem falls under the heading of hidden variables
(the hidden variables are the phrase segmentations and the phrasal alignments). One
could easily apply a standard word- or phrase-alignment model (Och and Ney, 2003) to
obtain initial estimates to bootstrap Searn.2

In the left-to-right setting, the optimal policy question becomes the following: given
a set of reference translations R, an English translation prefix e1, . . . , ei−1, what word
(or phrase) should be produced next (or is the translation complete?). The construction
of the optimal policy is driven by some loss function l. The choice of l depends on
what evaluation criteria we wish to optimize; eg., Bleu (Papineni et al., 2002), NIST
(Doddington, 2004b), Meteor (Banerjee and Lavie, 2005), etc. In some cases, it may
be possible to analyze a particular evaluation criteria and derive a closed form optimal
policy (though this seems doubtful for the more complex measures). So, to maintain
generality and to demonstrate the Searn is applicable even when the optimal policy
is not available in closed form, I suggest taking the search-based approach, as in the
summarization example from Chapter 6.

For machine translation, the optimal policy search is a very natural search problem.
We have a search space over prefixes of translations. Actions include adding a word (or

2I have just discovered that a very similar model has been proposed by Liang et al. (2006) and evaluated
on French-English translation. This approach uses standard structured perceptron updates, requires
initialization of alignments, and is applied only to 67k short (5-15 word) sentences. One interesting result
of this work is that updating the structured perceptron toward the true output does not work; rather,
one has to update it toward the best output the model proposes from an n-best list. This is essentially
due to a shortcoming in the structured perceptron algorithm and would not be a problem for Searn.
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phrase) to the end of an existing translation. Our reward function is, for example, Bleu.
We want to find the best full output starting at some given prefix. Once we have the best
full output, we simply inspect the first decision of that output. In order to make this
search process more tractable, it is useful to restrict the search space. In fact, it is easy to
verify that, for the purpose of computing the optimal policy, we only ever need to consider
adding words that actually occur in a reference summary (and are not already covered).
Moreover, for both Bleu and NIST, we can easily compute an admissible heuristic based
on uncovered unigram counts: we can simply assume that we will get all of them correct
but no corresponding bigrams or trigrams. It is likely possible to come up with better
heuristics, but the unigram statistic is simple.

7.5 Limitations

One potential limitation to Searn is that when one trains a new classifier on the output of
a previous iteration’s classifier, it is usually going to be the case that previous iteration’s
classifier performs better on the training data than it will on the test data. This means
that, although training via Searn is likely preferable to training against only an optimal
policy, it is probably still overly optimistic. Based on the experimental evidence, it
appears that this has yet to be a serious concern, but it remains worrisome. There are
two easy ways to combat this problem. The first is simply to attempt to ensure that the
learned classifiers do not overfit at all. In practice, however, this can be difficult. Another
approach that would likely completely remove this problem—albeit at a computational
cost—is to use cross-validation. Instead of training one classifier in each Searn step, one
could train ten, each holding out a different 10% of the data. When asked to run the
“current” classifier on an example, one uses the classifier that was not trained on that
example.

A second limitation, pointed out by Zhang (2006), is that there is a slight disparity
between what Searn does at a theoretical level and how Searn functions in practice.
In particular, Searn does not actually start with the optimal policy. Even when we can
construct an exactly optimal policy, the “true outputs” on which this optimal policy are
based are potentially noisy. This means that while the π∗ is optimal for the noisy data,
it is not optimal for the true data distribution. In fact, it is possible to construct noisy
distributions where Searn will perform poorly.3 The result of this is that the theory
gives us a regret bound, but the practice gives us only a loss bound, unless we are in a
noise-free setting. This drawback bears consideration, but I currently do not know how
to fix it.

7.6 Conclusions

From the perspective of natural language processing, Searn serves as a interpreter
through which NLP researchers can talk to machine learning researchers. The availability

3One can construct such a noisy distribution as follows. Suppose there is fundamental noise and a
“safe” option which results in small loss. Suppose this safe option is always more than a one step deviation
from the highly noisy “optimal” sequence. Searn will be confused by this divergence.
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of easy-to-use software packages for classification and regression problems have enabled
the NLP community to make use of such algorithms for these two simple applications.
Unfortunately, the majority of interesting problems in NLP involve producing structured
outputs, and there is some desire in NLP to apply new, state-of-the-art machine learning
methods to such complex problems. Unfortunately, the amount of effort required to do so
means that one must become an expert in machine learning. Searn solves this problem
for structured prediction by allowing the NLP researcher to largely ignore the machine
learning component that goes on under the hood, and focus exclusively on designing good
models and good features for a problem. Searn then acts as a link between this model
and features and the underlying machine learning algorithm.

In the context of structured prediction algorithm, Searn lies somewhere between
global learning algorithms, such as M3Ns and CRFs, and local learning algorithms, such
as those described Punyakanok and Roth (2001). The key difference between Searn

and global algorithms is in how uncertainty is handled. In global algorithms, the search
algorithm is used at test time to propagate uncertainty across the structure. In Searn,
the prediction costs are used during training time to propagate uncertainty across the
structure. Both contrast with local learning, in which no uncertainty is propagated.

From a wider machine learning perspective, Searn makes more apparent the connec-
tion between reinforcement learning and structured prediction. In particular, structured
prediction can be viewed as a reinforcement learning problem in a degenerate world in
which all observations are available at the initial time step. However, there are clearly
alternative middle-grounds between pure structured prediction and full-blown reinforce-
ment learning (and natural applications—such as planning—in this realm) for which this
connection might serve to be useful.

Despite these successes, there is much future work that is possible. In addition to
the extensions proposed in this thesis (which themselves entail a significant amount of
future work to scale and analyze), there are many possibilities for future directions. One
significant open question on the theoretical side is that of sample complexity: how many
examples do we need in order to achieve learning. Related problems of semi-supervised
and active learning in the Searn framework are also very interesting and likely to produce
powerful extensions.

Another vein of research is in applying Searn, or another search-based structure
prediction algorithm to domains other than language. Structured prediction problems
arise in a large variety of settings (vision, biology, system design, compilers, etc.). For
each of these domains, different sorts of search algorithms and different sorts of features
are necessary. Exploring such applications is likely to give rise to many more interesting
research questions.
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Appendix A

Summary of Notation

There is a some amount of notation used in this thesis that might be unfamiliar to some
readers. This appendix summarizes most of the symbols used.

A.1 Common Sets and Functions

w The weight vector; typically this is a vector in R
F .

F The feature space; typically this is R
D.

D The dimensionality of the feature space.
X The “input space:” the input to a learning system.
Y The “output space:” the output of a learning system.
R The real numbers, (−∞,∞).

R
+ The non-negative real numbers, [0,∞).

N The natural numbers, {0, 1, 2, . . . }, which always include zero.
Φ A function that takes an input and produces a feature vector; typically we

either use Φ(x) or Φ(x, y) for x ∈ X and y ∈ Y, though not always. This
function produces a vector in the feature space F .

D A probability distribution over examples for learning.
Z The hidden variable space.
` A cost-sensitive loss.
γ The margin for a linear classifier.
π A policy.
π∗ The optimal policy.
⊕ Vector concatenation.

A.2 Vectors, Matrices and Sums

To reduce the number of sums required, I make heavy use of standard vector and matrix
notation. If this notation is unfamiliar, it might take a bit of getting used to, but it makes
equations much cleaner. The most common notation used is w

>

Ph(x), for instance. The > operator denotes transpose and flips a column vector (in this
case, w) into a row vector, so that when multiplied with another vector (here, Φ(x)),
one obtains a real number. This is, therefore, shorthand for

∑I
i=1 wiΦ(x)i. Vectors are

always written italicized in bold and matrices are always written non-italicized in bold;
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for instance A. Furthermore, vectors are typically represented with lower case letters
(with the exception of Φ(·)), while upper case letters are reserved for matrices.

When sums are necessary, I maintain the convention that the upper bound and index
variable of the sum are the same letter. For instance, I write

∑

i to mean
∑I

i=1, when it
is clear from context that i corresponds to a sum up to I.

The lp norm of a vector is given by:

||u||p =

[

∑

i

|ui|p
]1/p

(A.1)

With a slight abuse of notation, I refer to the l0 norm of u to be the number of non-zero
elements of u: ||u||0 =

∑

i δui 6=0; and the infinity norm as the size of the maximal element:
||u||∞ = maxi |ui|. The “dual norm” to lp is lq, where q is such that (1/p + 1/q)−1 = 1;
l2 is self-dual, and the dual of l1 is l∞ and vice-versa.

A.3 Complexity Classes

There are three important complexity classes for the purpose of this thesis: functional
polynomial (FP), total function non-deterministic polynomial (TFNP) and functional
non-deterministic polynomial (FNP). These are related to the standard polynomial and
non-deterministic polynomial (P and NP) classes familiar to most. The key difference
between the functional classes and the standard classes is that the standard classes are
concerned with decision problems: the response is binary. The functional classes are
concerned with computing complex functions.

In the case of the function variants, it turns out it is easier to define FNP first.
FNP is the class of function problems of the following form: Given an input X and a
polynomial-time predicate F (X, Y ), if there exists a Y satisfying F (X, Y ) then output
any such Y ; otherwise, output “no.” FP is the subclass of FNP that has a polynomial
time solution. More interesting to use is the class TFNP (total function NP), which is
defined identically to FNP with the exception that we are guaranteed that there exists a
Y such that F (X, Y ) holds (and thus we must never output “no”). It is easy to verify that
FP⊆TFNP⊆FNP, with equality if and only if P=NP. See (Megiddo and Papadimitriou,
1991) for more information. Any time I discuss computational complexity issues in this
thesis, I will use the notions of FP and TFNP to maintain clarity. I will also always go
under the assumption that P6=NP (and hence FP6=TFNP).
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Appendix B

Proofs of Theorems

This appendix contains the proofs for most of the theoretical claims made in this thesis.

Section 3.5

Proof (Lemma 3.5: Policy Degradation). The proof largely follows the proofs of Lem 6.1
and Theorem 4.1 in CPI (Kakade and Langford, 2002). The three differences are that
(1) we must deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS or h is called
in the process of running hnew. The easiest case is when hCS is never called. The second
case is when it is called exactly once. The final case is when it is called more than once.
Denote these three events by c = 0, c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0) (B.1)

+ Pr(c = 1)L(D, hnew | c = 1)

+ Pr(c ≥ 2)L(D, hnew | c ≥ 2)

≤(1− β)T L(D, h) + Tβ(1− β)T−1
(

L(D, h) + `CS
h (h′)

)

(B.2)

+
(

1− (1− β)T − Tβ(1− β)T−1
)

cmax

=L(D, h) + Tβ(1− β)T−1`CS
h (h′) +

(

T
∑

i=2

(−1)iβi

(

T

i

)

)

L(D, h) (B.3)

+
(

1− (1− β)T − Tβ(1− β)T−1
)

cmax

≤L(D, h) + Tβ`CS
h (h′) (B.4)

+
(

1− (1− β)T − Tβ(1− β)T−1
)

(cmax − L(D, h))

≤L(D, h) + Tβ`CS
h (h′) +

(

1− (1− β)T − Tβ(1− β)T−1
)

cmax (B.5)
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=L(D, h) + Tβ`CS
h (h′) +

(

T
∑

i=2

(−1)iβi

(

T

i

)

)

cmax (B.6)

≤L(D, h) + Tβ`CS
h (h′) +

1

2
T 2β2cmax (B.7)

The first inequality is by bounding the probabilities of each event and the correspond-
ing losses. The second is by the assumption that the cost-sensitive regret is negative (we
are moving away from the optimal policy). The third uses the assumption that β < T/2.
Others are by algebra.

Proof (Theorem 3.6: Convergence). The proof involves invoking Lemma 3.5 repeatedly.
After C/β iterations, we can verify that:

L(D, h) ≤ L(D, h0) + CT`avg + cmax

(

1

2
CT 2β

)

Last, if we call the optimal policy, we fail with loss at most cmax. The probability of
failure after C/β iterations is at most T (1− β)C/β ≤ T exp[−C].

Section 3.6.1

Proof (Theorem 3.8). For the first part, we use a vector encoding of y that maintains
the decomposition over regions. Given a prefix y1, . . . , yi, solve opt on the future choices,
which gives us an optimal policy.

For the second part, we simply make Φ complex: for instance, include long-range
dependencies in sequence labeling. At the extreme, for non-zero w, this means computing
a minimum-energy configuration of a fully-connected Boltzmann machine, which is hard.
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Appendix C

Relevant Publications

Some of the material in this thesis has appeared in the proceedings of natural language
processing and machine learning conferences. The first paper relevant to this thesis,
though it has been completely subsumed at this point, was the introduction of the “Learn-
ing as Search Optimization” framework. This appeared at ICML 2005:

Hal Daumé III and Daniel Marcu. (2005). Learning as search optimization: Ap-
proximate large margin methods for structured prediction. Proceedings of the Inter-
national Conference on Machine Learning (ICML). Bonn, Germany. pp 169–176.

The development of the entity detection and tracking system described in Chapter 5 of this
thesis was introduced (using an older version of the learning framework) at HLT/EMNLP
2005:

Hal Daumé III and Daniel Marcu. (2005). A Large-Scale Exploration of Effective
Global Features for a Joint Entity Detection and Tracking Model. Proceedings of
the Joint Conference on Human Language Technology Conference and Empirical
Methods in Natural Language Processing (HLT/EMNLP). Vancouver, Canada. pp
97–104.

The beginnings of the new version of the learning algorithm were introduced in a paper
Daniel and I coauthored with John Langford that appeared at a workshop at NIPS:

Hal Daumé III, John Langford and Daniel Marcu. (2005). Search-Based Structured
Prediction as Classification. Advances in Structured Learning for Text and Speech
Processing, Workshop at the Conference on Neural Information Processing Systems
(NIPS). Whistler, Canada.

Finally, the Searn algorithm, which built on both the above ICML and NIPS workshop
papers, is submitted to NIPS 2006:

Hal Daumé III, John Langford and Daniel Marcu. (2006, under review). Search-
based Structured Prediction. Proceedings of the Conference on Neural Information
Processing Systems (NIPS). Vancouver, Canada.
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