Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction

Hal Daumé III and Daniel Marcu

Information Sciences Institute University of Southern California

{hdaume,marcu}@isi.edu

Structured Prediction 101

Learn a function mapping inputs to complex outputs:

Problem Decomposition

- Divide problem into *regions*
 - Express both the *loss function* and the *features* in terms of regions:

- Decoding:
 - Tractable using dynamic programming when regions are *simple* (*max-product algorithm*)
- Parameter estimation (linear models CRF, M3N, SVMSO, etc):
 - Tractable using dynamic programming when regions are *simple* (*sum-product algorithm*)

Slide 3

Problem

In many (most?) problems, decoding is hard:

VP

output space

- Coreference resolution
- Machine translation

NP

objective

- Automatic document summarization
- Even joint sequence labeling!

- Suboptimal heuristic search

Want weights that are optimal

for a suboptimal search procedure

., optimality is gone

unsearched region

Learning as Search Optimization

Generic Search Formulation

- Search Problem:
 - Search space
 - Operators
 - Goal-test function
 - Path-cost function
- Search Variable:
 - Enqueue function

- nodes := MakeQueue(S0)
- while nodes is not empty
 - > node := RemoveFront(nodes)
 - if node is a goal state return node
 - > next := Operators(node)
 - nodes := Enqueue(nodes, next)

▶ fail

Varying the **Enqueue** function can give us DFS, BFS, beam search, A* search, etc...

Learning as Search Optimization

Beam Search

Inspecting Enqueue

Formal Specification

- ➤ Given:
 - \blacktriangleright An input space X , output space Y , and search space S
 - ▶ A parameter function $\Phi : X \times S \to \mathbb{R}^D$
 - A loss function that decomposes over search: $l: X \times Y \times Y \to \mathbb{R}^{\geq 0}$

 \succ Find weights w to minimize:

$$L = \sum_{m=1}^{M} l(x_m, y_m, \hat{y} = search(x_m; w))$$

$$\leq \sum_{m=1}^{M} \sum_{n \to \hat{y}} \left[l(x_m, y_m, n) - l(x_m, y_m, par(n)) \right] + regularization term$$
We focus on 0/1 loss

Monotonicity: for any node,

we can tell if it can lead to

the correct solution or not

Online Learning Framework (LaSO)

- nodes := MakeQueue(S0)
- while nodes is not empty
 - > node := RemoveFront(nodes)

→ if none of {node} \cup nodes is y-good or node is a goal & not y-good

If we erred...

Where should we have gone?

- sibs := siblings(node, y)
- ▶ $w := update(w, x, sibs, \{node\} \cup nodes)$
- nodes := MakeQueue(sibs)

else

Continue search...

- ➢ if node is a goal state return w
- > next := Operators(node)
- > nodes := Enqueue(nodes, next)

Update our weights based on the good and the bad choices

Hal Daumé III (hdaume@isi.edu)

Search-based Margin

> The *margin* is the amount by which we are correct:

Note that the *margin* and hence *linear separability* is also a function of the *search algorithm!*

Slide 11

Update Methods:

Convergence Theorems

For linearly separable data:
 For perceptron updates, K ≤ γ^{-2} Number of updates

[Rosenblatt 1958; Freund+Shapire 1999; Collins 2002]

[Gentile 2001]

➢ For large margin updates,

$$K \leq \frac{2}{\gamma^2} \left| \frac{2}{\alpha} - 1 \right|^2 + \frac{8}{\alpha} - 4$$
$$= 2\gamma^{-2} + 4 \qquad (\alpha = 1)$$

Similar bounds for inseparable case

Experimental Results

- Two related tasks:
 - Syntactic chunking

(exact search + estimation is possible)

- Joint chunking + part of speech tagging
 (search + estimation intractable)
- Data from CoNLL 2000 data set
 - 8936 training sentences (212k words)
 - ➤ 2012 test sentences (47k words)
 - > The usual suspects as features:
 - Chunk length, word identity (+lower-cased, +stemmed), case pattern, {1,2,3}-letter prefix and suffix
 - Membership on lists of names, locations, abbreviations, stop words, etc
 - Applied in a window of 3
 - For syntactic chunking, we also use output of Brill's tagger as POS information

[Sutton + McCallum 2004]

Syntactic Chunking

> Search:

Left-to-right, hypothesizes entire chunk at a time:

 $(Great American)_{NP} (said)_{VP} (it)_{NP} (increased)_{VP} (its loan-loss reserves)_{NP} (by)_{PP} ($ 93 million)_{NP} (after)_{PP} (reviewing)_{VP} (its loan portfolio)_{NP} , \ldots$

Enqueue functions:

- \blacktriangleright Beam search: sort by cost, keep only top k hypotheses after each step
 - An error occurs exactly when none of the beam elements are good
- Exact search: store costs in dynamic programming lattice
 - An error occurs *only* when the fully-decoded sequence is wrong
 - > Updates are made by summing over the *entire lattice*
 - This is nearly the same as the CRF/M3N/SVMISO updates, but with evenly weighted errors

$$\Delta = \left[\sum_{n \in good} \frac{\Phi(x, n)}{|good|}\right] - \left[\sum_{n \in bad} \frac{\Phi(x, n)}{|bad|}\right]$$

Learning as Search Optimization

Syntactic Chunking Results

Joint Tagging + Chunking

Search: left-to-right, hypothesis POS and BIO-chunk

Great	American	said	i†	increased	its	loan-loss	reserves	by
NNP	NNP	VBD	PRP	VBD	PRP\$	NN	NNS	IN
B-NP	I-NP	B-VP	B-NP	B-VP	B-NP	I-NP	I-NP	B-PP

 Previous approach: Sutton+McCallum use belief propagation algorithms (eg., tree-based reparameterization) to perform inference in a double-chained CRF (13.6 hrs to train on 5%: 400 sentences)

Enqueue: beam search

Joint T+C Results

Slide 18

Variations on a Beam

Observation:

- We needn't use the same beam size for training and decoding
- Varying these values independently yields:

	Decoding Beam								
	1	5	10	25	50				
1	93.9	92.8	91.9	91.3	90.9				
5	90.5	94.3	94.4	94.1	94.1				
10	89.5	94.3	94.4	94.2	94.2				
25	88.7	94.2	94.5	94.3	94.3				
50	88.4	94.2	94.4	94.2	94.4				
	1 5 10 25 50	193.9590.51089.52588.750	Decc 1 5 1 93.9 92.8 5 90.5 94.3 10 89.5 94.3 25 88.7 94.2 50 88.4 94.2	Decoding B1510193.992.891.9590.594.394.41089.594.394.42588.794.294.55088.494.294.4	151025193.992.891.991.3590.594.394.494.11089.594.394.494.22588.794.294.594.35088.494.294.494.2				

Conclusions

- Problem:
 - Solving most problems is intractable
 - How can we learn effectively for these problems?
- Solution:
 - Integrate learning with *search* and learn parameters that are both good for identifying correct hypotheses and guiding search
- Results: State-of-the-art performance at low computational cost

Current work:

- Apply this framework to more complex problems
- Explore alternative loss functions
- Better formalize the optimization problem
 - Connection to CRFs, M3Ns and SVMSOs
 - Reductionist strategy

Slide 20