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Structured Prediction 101
➢ Learn a function mapping inputs to complex outputs:

f : X  Y

I can can a can
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Sequence Labeling
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Parsing
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Input Space Decoding Output Space

Mary did not slap the green witch .

Mary no daba una botefada a la bruja verda .

Coreference ResolutionMachine Translation



Learning as Search OptimizationSlide 3

Hal Daumé III (hdaume@isi.edu)

Problem Decomposition
➢ Divide problem into regions

➢ Express both the loss function and the features in terms of regions:

I can can a can

Pro Md Vb Dt Nn

➢ Decoding:
➢ Tractable using dynamic programming when regions are simple

(max-product algorithm)

➢ Parameter estimation (linear models – CRF, M3N, SVMSO, etc):
➢ Tractable using dynamic programming when regions are simple

(sum-product algorithm)
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Problem
➢ In many (most?) problems, decoding is hard:

➢ Coreference resolution
➢ Machine translation
➢ Automatic document summarization
➢ Even joint sequence labeling!

I can can a can

Pro Md Vb Dt Nn

NP VP NP

Suboptimal heuristic search

➢ Even if estimation were tractable, optimality is gone

output space

ob
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e

unsearched region

Want weights that are optimal
for a suboptimal search procedure



Learning as Search OptimizationSlide 5

Hal Daumé III (hdaume@isi.edu)

Generic Search Formulation
➢ Search Problem:

➢ Search space
➢ Operators
➢ Goal-test function
➢ Path-cost function

➢ Search Variable:
➢ Enqueue function

➢ nodes := MakeQueue(S0)

➢ while nodes is not empty
➢ node := RemoveFront(nodes)
➢ if node is a goal state return node
➢ next := Operators(node)
➢ nodes := Enqueue(nodes, next)

➢ fail

Varying the Enqueue function can give us DFS,
BFS, beam search, A* search, etc...
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Exact (DP) Search

S0
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Beam Search

S0
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Inspecting Enqueue
➢ Generally, we sort nodes by:

f n = g n  hn

Node value Path cost Future cost Assume this
is given

Assume this is a linear function of features:
g n = wTx , n
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Formal Specification
➢ Given:

➢ An input space      , output space       , and search space
➢ A parameter function
➢ A loss function that decomposes over search:

               (monotonicity)
➢ Find weights     to minimize:

X Y

l : X × Y × Y  ℝ≥0
 : X × S  ℝD

S

w

L = ∑
m=1

M

l xm , ym , y=search xm ; w

≤ ∑
m=1

M

∑
n y

[ l xm , ym , n−l xm , ym , par n ]
+ regularization term

We focus on 0/1 loss

l x , y , y ≤ l x , y ,n ∀ n y 
l x , y , n ≤ l x , y , n ∀ n n

(not absolutely 
necessary)
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Online Learning Framework (LaSO)
➢ nodes := MakeQueue(S0)
➢ while nodes is not empty

➢ node := RemoveFront(nodes)
➢ if none of {node} ∪ nodes is y-good or node is a goal & not y-good

➢ sibs := siblings(node, y)
➢ w := update(w, x, sibs, {node} ∪ nodes)
➢ nodes := MakeQueue(sibs)

➢ else
➢ if node is a goal state return w
➢ next := Operators(node)
➢ nodes := Enqueue(nodes, next)

Monotonicity: for any node,
we can tell if it can lead to
the correct solution or not

If we erred... Where should we have gone?

Update our weights based on
the good and the bad choices

Continue search...
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Search-based Margin
➢ The margin is the amount by which we are correct:

uTx , g1

uTx , g2

uTx ,b1

uTx ,b2

u



Note that the margin and hence linear separability is 
also a function of the search algorithm!
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Update Methods:
➢ Perceptron updates:

➢ Approximate large margin updates:

➢ Also downweight y-good nodes by:

w  w  [ ∑n∈good

x , n
∣good∣ ] − [ ∑n∈bad

x , n
∣bad∣ ]



[Rosenblatt 1958;
 Freund+Shapire 1999;

 Collins 2002]

w  ℘ w  C
 k
℘

℘u = u / max { 0, ∥u∥ }
Generation of weight vector

Nuisance param, use       

Project into unit sphere

2

1−
B
k

Nuisance param, use       1/

Ratio of desired margin

[Gentile 2001]
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Convergence Theorems
➢ For linearly separable data:

➢ For perceptron updates,

➢ For large margin updates,

➢ Similar bounds for inseparable case

K ≤ −2

K ≤
2
2  2


− 1 

2


8

− 4

= 2−24 =1

Number of updates

[Rosenblatt 1958;
 Freund+Shapire 1999;

 Collins 2002]

[Gentile 2001]
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Experimental Results
➢ Two related tasks:

➢ Syntactic chunking
(exact search + estimation is possible)

➢ Joint chunking + part of speech tagging
(search + estimation intractable)

➢ Data from CoNLL 2000 data set
➢ 8936 training sentences (212k words)
➢ 2012 test sentences (47k words)
➢ The usual suspects as features:

➢ Chunk length, word identity (+lower-cased, +stemmed), case pattern, {1,2,3}-letter 
prefix and suffix

➢ Membership on lists of names, locations, abbreviations, stop words, etc
➢ Applied in a window of 3
➢ For syntactic chunking, we also use output of Brill's tagger as POS information

[Sutton + McCallum 2004]
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Syntactic Chunking
➢ Search:

➢ Left-to-right, hypothesizes entire chunk at a time:

➢ Enqueue functions:
➢ Beam search: sort by cost, keep only top k hypotheses after each step

➢ An error occurs exactly when none of the beam elements are good
➢ Exact search: store costs in dynamic programming lattice

➢ An error occurs only when the fully-decoded sequence is wrong
➢ Updates are made by summing over the entire lattice
➢ This is nearly the same as the CRF/M3N/SVMISO updates, 

but with evenly weighted errors

[Great American]NP [said]VP [it]NP [increased]VP [its loanloss reserves]NP 
[by]PP [$ 93 million]NP [after]PP [reviewing]VP [its loan portfolio]NP , ...

 = [ ∑n∈good

x ,n
∣good∣ ] − [ ∑n∈bad

x ,n
∣bad∣ ]
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Syntactic Chunking Results

Training Time (minutes)

F-
Sc

or
e

[Collins 2002]

[Zhang+Damerau+Johnson 
2002]; timing unknown

[Sarawagi+Cohen 2004]

33 min

22 min

24 min

4 min
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Joint Tagging + Chunking
➢ Search: left-to-right, hypothesis POS and BIO-chunk

➢ Previous approach: Sutton+McCallum use belief propagation 
algorithms (eg., tree-based reparameterization) to perform inference in 
a double-chained CRF (13.6 hrs to train on 5%: 400 sentences)

➢ Enqueue: beam search

Great American said it increased its loanloss reserves by ...
NNP NNP VBD PRP VBD PRP$ NN NNS IN ...
BNP INP BVP BNP BVP BNP INP INP BPP ...
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Joint T+C Results

Training Time (hours) [log scale]
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[Sutton+McCallum 2004]
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Variations on a Beam
➢ Observation:

➢ We needn't use the same beam size for training and decoding
➢ Varying these values independently yields:

1 5 10 25 50

1 93.9 92.8 91.9 91.3 90.9
5 90.5 94.3 94.4 94.1 94.1

10 89.5 94.3 94.4 94.2 94.2
25 88.7 94.2 94.5 94.3 94.3
50 88.4 94.2 94.4 94.2 94.4

Decoding Beam
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Conclusions
➢ Problem:

➢ Solving most problems is intractable
➢ How can we learn effectively for these problems?

➢ Solution:
➢ Integrate learning with search and learn parameters that are both good for 

identifying correct hypotheses and guiding search
➢ Results: State-of-the-art performance at low computational cost

➢ Current work:
➢ Apply this framework to more complex problems
➢ Explore alternative loss functions
➢ Better formalize the optimization problem

➢ Connection to CRFs, M3Ns and SVMSOs
➢ Reductionist strategy


