
Learning as Search OptimizationSlide 1

Hal Daumé III (hdaume@isi.edu)

Learning as Search Optimization:
Approximate Large Margin Methods
for Structured Prediction

Hal Daumé III and Daniel Marcu
Information Sciences Institute

University of Southern California

{hdaume,marcu}@isi.edu

Learning as Search OptimizationSlide 2

Hal Daumé III (hdaume@isi.edu)

Structured Prediction 101
➢ Learn a function mapping inputs to complex outputs:

f : X Y

I can can a can

Pro Md Vb Dt Nn

Pro Md Vb Dt Vb

Pro Md Vb Dt Md

Sequence Labeling

Pro Md Nn Dt Nn

Pro Md Nn Dt Vb

Pro Md Nn Dt Md

Pro Md Md Dt Nn

Pro Md Md Dt Vb

Parsing

Bill Clinton

Clinton

Al Gore

Gore

he

the President

Input Space Decoding Output Space

Mary did not slap the green witch .

Mary no daba una botefada a la bruja verda .

Coreference ResolutionMachine Translation

Learning as Search OptimizationSlide 3

Hal Daumé III (hdaume@isi.edu)

Problem Decomposition
➢ Divide problem into regions

➢ Express both the loss function and the features in terms of regions:

I can can a can

Pro Md Vb Dt Nn

➢ Decoding:
➢ Tractable using dynamic programming when regions are simple

(max-product algorithm)

➢ Parameter estimation (linear models – CRF, M3N, SVMSO, etc):
➢ Tractable using dynamic programming when regions are simple

(sum-product algorithm)

Learning as Search OptimizationSlide 4

Hal Daumé III (hdaume@isi.edu)

Problem
➢ In many (most?) problems, decoding is hard:

➢ Coreference resolution
➢ Machine translation
➢ Automatic document summarization
➢ Even joint sequence labeling!

I can can a can

Pro Md Vb Dt Nn

NP VP NP

Suboptimal heuristic search

➢ Even if estimation were tractable, optimality is gone

output space

ob
je

ct
iv

e

unsearched region

Want weights that are optimal
for a suboptimal search procedure

Learning as Search OptimizationSlide 5

Hal Daumé III (hdaume@isi.edu)

Generic Search Formulation
➢ Search Problem:

➢ Search space
➢ Operators
➢ Goal-test function
➢ Path-cost function

➢ Search Variable:
➢ Enqueue function

➢ nodes := MakeQueue(S0)

➢ while nodes is not empty
➢ node := RemoveFront(nodes)
➢ if node is a goal state return node
➢ next := Operators(node)
➢ nodes := Enqueue(nodes, next)

➢ fail

Varying the Enqueue function can give us DFS,
BFS, beam search, A* search, etc...

Learning as Search OptimizationSlide 6

Hal Daumé III (hdaume@isi.edu)

Exact (DP) Search

S0

Learning as Search OptimizationSlide 7

Hal Daumé III (hdaume@isi.edu)

Beam Search

S0

Learning as Search OptimizationSlide 8

Hal Daumé III (hdaume@isi.edu)

Inspecting Enqueue
➢ Generally, we sort nodes by:

f n = g n hn

Node value Path cost Future cost Assume this
is given

Assume this is a linear function of features:
g n = wTx , n

Learning as Search OptimizationSlide 9

Hal Daumé III (hdaume@isi.edu)

Formal Specification
➢ Given:

➢ An input space , output space , and search space
➢ A parameter function
➢ A loss function that decomposes over search:

 (monotonicity)
➢ Find weights to minimize:

X Y

l : X × Y × Y ℝ≥0
 : X × S ℝD

S

w

L = ∑
m=1

M

l xm , ym , y=search xm ; w

≤ ∑
m=1

M

∑
n y

[l xm , ym , n−l xm , ym , par n]
+ regularization term

We focus on 0/1 loss

l x , y , y ≤ l x , y ,n ∀ n y
l x , y , n ≤ l x , y , n ∀ n n

(not absolutely
necessary)

Learning as Search OptimizationSlide 10

Hal Daumé III (hdaume@isi.edu)

Online Learning Framework (LaSO)
➢ nodes := MakeQueue(S0)
➢ while nodes is not empty

➢ node := RemoveFront(nodes)
➢ if none of {node} ∪ nodes is y-good or node is a goal & not y-good

➢ sibs := siblings(node, y)
➢ w := update(w, x, sibs, {node} ∪ nodes)
➢ nodes := MakeQueue(sibs)

➢ else
➢ if node is a goal state return w
➢ next := Operators(node)
➢ nodes := Enqueue(nodes, next)

Monotonicity: for any node,
we can tell if it can lead to
the correct solution or not

If we erred... Where should we have gone?

Update our weights based on
the good and the bad choices

Continue search...

Learning as Search OptimizationSlide 11

Hal Daumé III (hdaume@isi.edu)

Search-based Margin
➢ The margin is the amount by which we are correct:

uTx , g1

uTx , g2

uTx ,b1

uTx ,b2

u

Note that the margin and hence linear separability is
also a function of the search algorithm!

Learning as Search OptimizationSlide 12

Hal Daumé III (hdaume@isi.edu)

Update Methods:
➢ Perceptron updates:

➢ Approximate large margin updates:

➢ Also downweight y-good nodes by:

w w [∑n∈good

x , n
∣good∣] − [∑n∈bad

x , n
∣bad∣]

[Rosenblatt 1958;
 Freund+Shapire 1999;

 Collins 2002]

w ℘ w C
 k
℘

℘u = u / max { 0, ∥u∥ }
Generation of weight vector

Nuisance param, use

Project into unit sphere

2

1−
B
k

Nuisance param, use 1/

Ratio of desired margin

[Gentile 2001]

Learning as Search OptimizationSlide 13

Hal Daumé III (hdaume@isi.edu)

Convergence Theorems
➢ For linearly separable data:

➢ For perceptron updates,

➢ For large margin updates,

➢ Similar bounds for inseparable case

K ≤ −2

K ≤
2
2 2

− 1

2

8

− 4

= 2−24 =1

Number of updates

[Rosenblatt 1958;
 Freund+Shapire 1999;

 Collins 2002]

[Gentile 2001]

Learning as Search OptimizationSlide 14

Hal Daumé III (hdaume@isi.edu)

Experimental Results
➢ Two related tasks:

➢ Syntactic chunking
(exact search + estimation is possible)

➢ Joint chunking + part of speech tagging
(search + estimation intractable)

➢ Data from CoNLL 2000 data set
➢ 8936 training sentences (212k words)
➢ 2012 test sentences (47k words)
➢ The usual suspects as features:

➢ Chunk length, word identity (+lower-cased, +stemmed), case pattern, {1,2,3}-letter
prefix and suffix

➢ Membership on lists of names, locations, abbreviations, stop words, etc
➢ Applied in a window of 3
➢ For syntactic chunking, we also use output of Brill's tagger as POS information

[Sutton + McCallum 2004]

Learning as Search OptimizationSlide 15

Hal Daumé III (hdaume@isi.edu)

Syntactic Chunking
➢ Search:

➢ Left-to-right, hypothesizes entire chunk at a time:

➢ Enqueue functions:
➢ Beam search: sort by cost, keep only top k hypotheses after each step

➢ An error occurs exactly when none of the beam elements are good
➢ Exact search: store costs in dynamic programming lattice

➢ An error occurs only when the fully-decoded sequence is wrong
➢ Updates are made by summing over the entire lattice
➢ This is nearly the same as the CRF/M3N/SVMISO updates,

but with evenly weighted errors

[Great American]NP [said]VP [it]NP [increased]VP [its loanloss reserves]NP
[by]PP [$ 93 million]NP [after]PP [reviewing]VP [its loan portfolio]NP , ...

 = [∑n∈good

x ,n
∣good∣] − [∑n∈bad

x ,n
∣bad∣]

Learning as Search OptimizationSlide 16

Hal Daumé III (hdaume@isi.edu)

Syntactic Chunking Results

Training Time (minutes)

F-
Sc

or
e

[Collins 2002]

[Zhang+Damerau+Johnson
2002]; timing unknown

[Sarawagi+Cohen 2004]

33 min

22 min

24 min

4 min

Learning as Search OptimizationSlide 17

Hal Daumé III (hdaume@isi.edu)

Joint Tagging + Chunking
➢ Search: left-to-right, hypothesis POS and BIO-chunk

➢ Previous approach: Sutton+McCallum use belief propagation
algorithms (eg., tree-based reparameterization) to perform inference in
a double-chained CRF (13.6 hrs to train on 5%: 400 sentences)

➢ Enqueue: beam search

Great American said it increased its loanloss reserves by ...
NNP NNP VBD PRP VBD PRP$ NN NNS IN ...
BNP INP BVP BNP BVP BNP INP INP BPP ...

Learning as Search OptimizationSlide 18

Hal Daumé III (hdaume@isi.edu)

Joint T+C Results

Training Time (hours) [log scale]

Jo
in

t t
ag

gi
ng

/c
hu

nk
in

g
ac

cu
ra

cy

[Sutton+McCallum 2004]

23 min

7 min3 min

1 min

Learning as Search OptimizationSlide 19

Hal Daumé III (hdaume@isi.edu)

Variations on a Beam
➢ Observation:

➢ We needn't use the same beam size for training and decoding
➢ Varying these values independently yields:

1 5 10 25 50

1 93.9 92.8 91.9 91.3 90.9
5 90.5 94.3 94.4 94.1 94.1

10 89.5 94.3 94.4 94.2 94.2
25 88.7 94.2 94.5 94.3 94.3
50 88.4 94.2 94.4 94.2 94.4

Decoding Beam

T
ra
in
in
g

B
e
a
m

Learning as Search OptimizationSlide 20

Hal Daumé III (hdaume@isi.edu)

Conclusions
➢ Problem:

➢ Solving most problems is intractable
➢ How can we learn effectively for these problems?

➢ Solution:
➢ Integrate learning with search and learn parameters that are both good for

identifying correct hypotheses and guiding search
➢ Results: State-of-the-art performance at low computational cost

➢ Current work:
➢ Apply this framework to more complex problems
➢ Explore alternative loss functions
➢ Better formalize the optimization problem

➢ Connection to CRFs, M3Ns and SVMSOs
➢ Reductionist strategy

