

Conference of the Association for Machine Translation in the Americas Wed 3I Oct 2012

Fabienne Braune Marine Carpuat Ann Clifton Hal Daumé III Alex Fraser Katie Henry Anni Irvine Jagadeesh Jagarlamudi John Morgan Chris Quirk Majid Razmara Rachel Rudinger Ales Tamchyna

Domains really are different

- Can you guess what domain each of these sentences is drawn from?

News
Parliament
Medical

Science

Stepmother

Many factors contributed to the French and Dutch objections to the proposed EU constitution

Please rise, then, for this minute's silence

Latent diabetes mellitus may become manifest during thiazide therapy

Statistical machine translation is based on sets of text to build a translation model

I forgot to mention in yesterdays post that I also trimmed an overgrown HUGE hedge that spams the entire length of the front of my house and is about 3^{\prime} accrossed.

Translating across domains is hard

Old Domain (Parliament)

Original monsieur le président, les pêcheurs de homard de la région de l'atlantique sont dans une situation catastrophique.
Reference mr. speaker, lobster fishers in atlantic canada are facing a disaster.
System mr. speaker, the lobster fishers in atlantic canada are in a mess.

New Domain

Original comprimés pelliculés blancs pour voie orale.
Reference white film-coated tablets for oral use.
System white pelliculés tablets to oral.

New Domain

Original mode et voie(s) d'administration
Reference method and route(s) of administration
System fashion and voie(s) of directors

Key Question: What went wrong?

S^{4} taxonomy of adaptation effects

- Seen: Never seen this word before
- News to medical:"diabetes mellitus"
- Sense: Never seen this word used in this way
- News to technical:"monitor"
- Score: The wrong output is scored higher
- News to medical:"manifest"
- Search: Decoding/search erred

Working with no new domain parallel data!

Measuring SEEN effects

Add all phrase pairs with previously unseen F side

Measuring SENSE effects

Add all phrase pairs with previously seen F side, but unseen translation

Measuring SCORE effects

Add all phrase pairs, period (and keep new domain scores)

Macro-analysis of S^{4} effects

- Evaluation using BLEU

News Medical Science Subtitles

Seen	$+0.3 \%$	$+8.1 \%$	$+6.1 \%$	$+5.7 \%$
Sense	$+0.6 \%$	$+6.6 \%$	$+4.4 \%$	$+8.7 \%$
Score	$+0.6 \%$	$+4.5 \%$	$+9.9 \%$	$+8.4 \%$
Search	$+0.0 \%$	$+0.0 \%$	$+0.0 \%$	$+0.0 \%$

Micro-analysis of S^{4} effects

Output (en):

Input (fr):

Ref (en):

Correct

Seen-error

starting dose

Seen-freebie

Sense-error

Micro-analysis of S^{4} effects

Output (en):

Input (fr):

Ref (en):
what
gadovist contains
que
contient
gadovist
contains

Correct
Seen-error

Seen-freebie
Sense-error

Errors found by micro-analysis

Senses are domain/language specific

Case 1: No NEW domain parallel data

- Common situation
- Lots of data in some OLD domain (e.g., government documents)
- Need to translate many NEW domain documents
- Acquiring additional NEW domain translations is critical!
- Lots of past work in term mining
- Distributional similarity [Rapp 1996]
- Orthographic similarity
- Temporal similarity

Marginal matching for "sense" errors

Given:

- Joint $p(x, y)$ in old domain
- Marginals $q(x)$ and $q(y)$ in the new domain

	grant	tune	\ldots	Σ
accorder	9	1	\ldots	$10+\ldots$
\ldots	\ldots	\ldots	\ldots	\ldots
Σ	$9+\ldots$	$1+\ldots$	\ldots	

Recover:

- Joint $q(x, y)$ in new domain

We formulate as a LIregularlized linear program

Easier: many $q(x)$ and $q(y) s$

,	grant	tune	...	Σ
accorder	???	?!?	??	5
\ldots	?!?	?!?	?!?	...
Σ	1	5	...	

Additional features

- Sparsity: \# of non-zero entries should be small
- Distributional: document co-occurrence \Leftrightarrow translation pair
- Spelling: Low edit dist \Leftrightarrow translation pair
- Frequency: Rare words align to rare words; common words align to common words
c-aractérisation characterization

Intrinsic evaluation: Mean Reciprocal Rank (MRR)

- RankedWikipedia

Science EMEA
 document pairs: learning from most science-like first

- Decreasing benefits after $\sim 50,000$ document pairs
- Relative gain expected to slow, as documents are less and less science-y

Example learned translations (Science)

French	Correct English	Learned Translations
cisaillement	shear	viscous crack shear
chromosomes	chromosomes	chromosomes chromosome chromosomal
caractérisation	spiders	characterization characteristic
araignées	stems	spiders ant spider
tiges		usda centimeters flowering

BLEU Scores

-EMEA - Science					
20	22	24	26	28	30
Baseline					

Case 2: Add NEW domain parallel data

- Say we have a NEW domain translation memory
- How can we leverage our OLD domain to achieve the greatest benefit?

Initial adaptation baselines

OLD

NEW

I. Do nothing

OLD

2. Ignore old data

NEW
3. Concatenate the two

Use both models (log-linear mixture)

Engine

Baseline:

$$
\alpha_{1} \log p(f \mid e)+\alpha_{2} \log p(e)+\ldots
$$

New:

$\alpha_{1 O L D} \log p_{O L D}(f \mid e)+\alpha_{1 N E W} \log p_{N E W}(f \mid e)+\alpha_{2} \log p(e)+\cdots$

Combine models (linear mixture)

Baseline:

$$
p(f \mid e)=\frac{c(f, e)}{c(e)}
$$

New - mix with λ picked on dev set:

$$
p(f \mid e)=\lambda \frac{c_{o l d}(f, e)}{c_{o l d}(e)}+(1-\lambda) \frac{c_{o l d}(f, e)}{c_{o l d}(e)}
$$

BLEU results

	OLD	NEW	OLD+ NEW	Use both models	Combine models
News	23.8	21.7	22.0	16.4	21.4
EMEA	28.7	34.8	34.8	32.9	36.6
Science	26.1	32.3	27.5	30.9	32.2
Subtitles	15.1	20.6	20.5	18.4	18.5

Next steps

- These mixtures are simple but coarse
- More fine-grained approaches:
- Data selection: pick OLD data most like NEW
- Data reweighting: use fractional counts on OLD data; greater weight to sentence pairs more like NEW
- Can reweight at the word or phrase level rather than sentence pair [Foster et al., 2010]
- Similar in spirit to statistical domain adaptation
- but existing machine learning algorithms can't be applied
- because SMT is not a classification task

Phrase Sense Disambiguation (PSD)

Proposed solution: Phrase Sense Disambiguation

[Carpuat \& Wu 2007]

- Incorporate context in lexical choice
- Yields P(e|f, context) features for phrase pairs
- Unlike usual $P(\mathrm{e} \mid \mathrm{f})$ relative frequencies
- Turns phrase translation into discriminative classification
- Just like standard machine learning tasks
[Chan et al. 2007, Stroppa et al. 2007, Gimenez \& Màrquez 2008, Jeong et al. 2010, Patry \& Langlais 2011, ...]

Why PSD for domain adaptation?

Disambiguating English senses of rapport

Phrase Sense Disambiguation

- PSD = phrase translation as classification
- PSD at test time
- use context to predict correct English translation of French phrase
- local lexical and POS context , global sentence and document context
- PSD at train time
- extract French phrases with English translations from word alignment
- throw into off-the-shelf classifier + adaptation techniques
[Blitzer \& Daumé 2010]

Domain adaptation in PSD

- Train a classifier over OLD and NEW data Allow classifier to:
- share some features \{rédigé ...\} rapport \rightarrow report
- keep others domain specific rapport $\{. .$. valeurs\} \rightarrow ratio

Feature augmentation

Original features	OLD	NEW
	$\begin{gathered} \varphi_{e, f} \mapsto \\ \left\langle\varphi_{e, f}, \varphi_{e, f}, 0\right\rangle \end{gathered}$	$\begin{gathered} \varphi_{e, f} \mapsto \\ \left\langle\varphi_{e, f}, 0, \varphi_{e, f}\right\rangle \end{gathered}$
	\{rédigé ...\} rapport	\{rédigé ...\} rapport
	$\underset{\substack{\text { \{aucun } \ldots \text {... rapport } \\ \rightarrow \text { relationship }}}{\text { a }}$	rapport \{... valeurs ${ }_{\text {c }} \rightarrow$ ratio

Domain adaptation results: Science

PSD in Moses: VW-Moses integration

- First general purpose classifier in Moses
- Tight integration
- Can be built and run out-of-the-box, extended with new features, etc
- Fast!
- 180\% run time of standard Moses, fully parallelized in training (multiple processes) and decoding (multithreading)

Other areas of investigation
PSD for Hierarchical phrase-based translation

Discovering latent topics from parallel data

Spotting new senses: determining when a source word gains a new sense (needs a new translation)

Spotting New Senses

- Binary classification problem:
- +ve: French token has previously unseen sense
- -ve: French token is used in a known way
- Gold standard as byproduct of S^{4} analysis
- Many features considered
- Frequency of words/translations in each domain
- Language model perplexities across domains
- Topic model "mismatches"
- Marginal matching features
- Translation "flow" impedence

Experimental Results

Selected features:
EMEA: ppl || matchm flow || matchm topics flow Science: ppl || matchm ppl || matchm topics ppl
Subs: topcs || matchm topics || matchm topics flow

Discussion

- Introduced taxonomy and measurement tools for adaptation effects in MT
- "Score" errors - target of prior work - only a part of what goes wrong
- Marginal matching introduced as a model for addressing all S^{4} issues simultaneously: +2.4 BLEU
- Data and outputs released for you to use (both in MT and as a stand-alone lexical selection task)
- Feature-rich approaches integrated into Moses via VW library, applied to adaptation
- Range of other problems to work on: identifying new senses, cross-domain topic models, etc.)

Thanks!
 Qu
 uestions?

